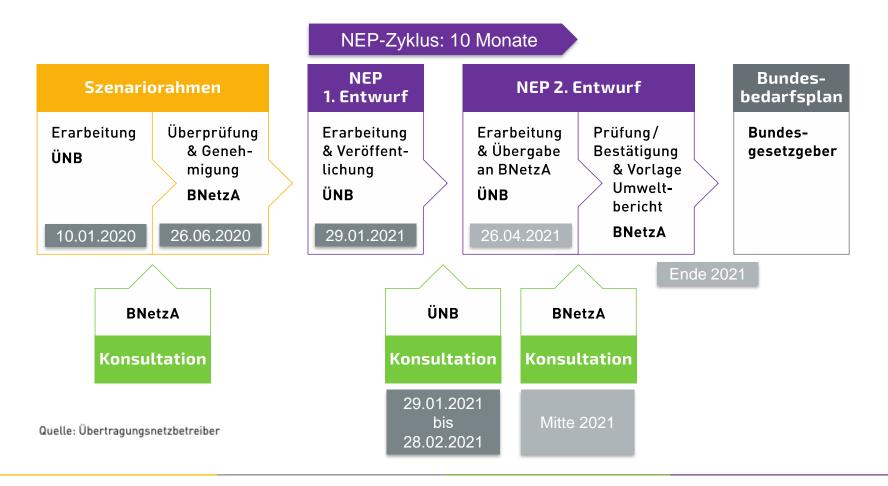
Netzentwicklungsplan Strom 2035 (2021), erster Entwurf

NETZ ENTWICKLUNGS PLAN **STROM**

NETZ ENTWICKLUNGS PLAN **STROM Allgemeines**

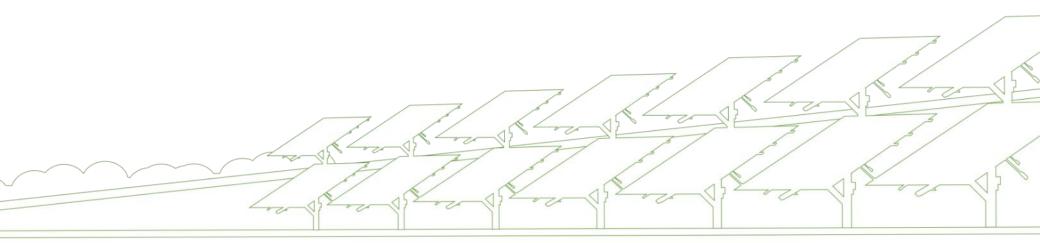
Der erste und der zweite Entwurf

Der NEP 2035 (2021)


- ... nimmt mit dem Jahr 2035 den **Ausblick des vorherigen NEP** in den Fokus.
- ... enthält drei Szenarien für das Jahr 2035 und einen Ausblick auf 2040.
- ... zeigt den Übertragungsbedarf zwischen Anfangs- und Endpunkten (zwei Netzknoten) und keine konkreten Trassenkorridore oder -verläufe.
- ... zeigt **keine zukünftigen Kraftwerksstandorte** und Standorte für EE-Anlagen, auch keine bevorzugten.

Folgende Inhalte werden erst im zweiten Entwurf des NEP enthalten sein:

- Ergebnisse der Netzanalysen des Langfristszenarios B 2040,
- Ergebnisse der Kosten-Nutzen-Analyse (CBA) der noch nicht im Bundesbedarfsplan 2021 enthaltenen zusätzlichen Interkonnektoren,
- Ergebnisse der **Stabilitätsberechnungen** sowie der Berechnungen des Bedarfs an Anlagen zur **Blindleistungskompensation** auf Basis des Szenarios B 2035,
- Ergebnisse der Sensitivität zum Szenario C 2035 unter Berücksichtigung eines alternativen Anschlusses von 6 GW Offshore-Windenergie am North Sea Wind Power Hub.


Wo stehen wir jetzt?

Szenariorahmen

ENTWICKLUNGS PLAN **STROM**

Wesentliche Elemente des von der BNetzA genehmigten Szenariorahmens vom 26.06.2020

- Zentrale Rolle des Stromsektors für Energiewende und Klimaschutz:
 Elektrifizierung des Wärme-, Verkehrs- und Industriesektors führt zu deutlichem Anstieg des Bruttostromverbrauchs bis 2035 bzw. 2040 auf rund 650-700 TWh (+100-150 TWh)
- **EE-Ausbau schreitet voran**: **70-74** % **Anteil** am Bruttostromverbrauch in 2035, 76 % in 2040 insbesondere: **PV und Offshore-Windenergie**; **Onshore-Windenergie** bleibt bedeutendste EE-Quelle
- Konventionelle Kraftwerke: Nur noch in A 2035 rund 8 GW Kohle-Kraftwerke gem. KVBG; deutlicher Zubau an Gas-KW angenommen; zudem Flexibilisierung des Betriebs zur besseren EE-Integration
- Reduktion der CO₂-Emissionen des Kraftwerksparks zur Erreichung der Klimaschutzziele: max. 120 Mio. t CO₂ in 2035 und max. 60 Mio. t CO₂ in 2040
- Integration des europäischen Strom-Binnenmarktes: Berücksichtigung Flow-Based Market Coupling sowie der Vorgaben des "Clean Energy Package" zum europäischen Handel (70% Interkonnektoren-Kapazität)
- Abbildung des Auslands durch Einbettung in das europäische Szenario "Distributed Energy" des Ten-Year Network Development Plan (TYNDP) 2020

Einordnung der Szenarien

Die Szenarien unterscheiden sich in zwei Dimensionen:

- Netzorientierung: allgemein
 Entwicklungen bzgl. der Verortung und
 der Betriebsweise von Anlagen, die
 dazu beitragen können, Netzengpässe
 im Verteil- oder Übertragungsnetz zu
 reduzieren oder zu vermeiden, ohne
 ausschließlich diesem Zweck zu dienen
- Sektorenkopplung: Verbindung u. a. der Bereiche Strom, Mobilität, Wärme und Gas sowie industrielle Anwendungen

Quelle: Übertragungsnetzbetreiber

Übersicht der Kennzahlen der Szenarien (I)

Installierte Leistung [GW]

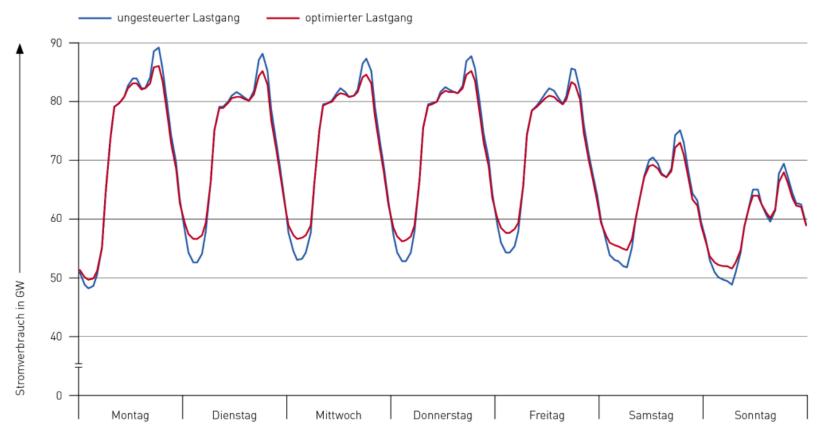
Energieträger	Referenz 2019	A 2035	B 2035	C 2035	B 2040
Kernenergie	8,1	0,0	0,0	0,0	0,0
Braunkohle	20,9	7,8	0,0	0,0	0,0
Steinkohle	22,6	0,0	0,0	0,0	0,0
Erdgas	30,0	38,1	42,4	46,7	42,4
Öl	4,4	1,3	1,3	1,3	1,1
Pumpspeicher	9,8	10,2	10,2	10,2	10,2
sonstige konventionelle Erzeugung*	4,3	3,8	3,8	3,8	3,7
Summe konventionelle Erzeugung	100,1	61,2	57,7	62,0	57,4
Windenergie onshore	53,3	81,5	86,8	90,9	88,8
Windenergie offshore	7,5	28,0	30,0	34,0	40,0
Photovoltaik	49,0	110,2	117,8	120,1	125,8
Biomasse	8,3	6,8	7,5	8,7	8,2
Speicherwasser und Laufwasser	4,8	5,6	5,6	5,6	5,6
sonstige regenerative Erzeugung *	1,3	1,3	1,3	1,3	1,3
Summe regenerative Erzeugung	124,2	233,4	249,0	260,6	269,7
Summe Erzeugung	224,3	294,6	306,7	322,6	327,1

Übersicht der Kennzahlen der Szenarien

	Referenz 2019	A 2035	B 2035	C 2035	B 2040	
	Stromverbrauc	h [TWh]				
Nettostromverbrauch zzgl. Verteilnetzverluste **	524,3***	603,4	621,5	651,5	653,2	
	Treiber Sektoren	kopplung				
Haushaltswärmepumpen [Anzahl in Mio.]	1,0	3,0	5,0	7,0	6,5	
Elektromobilität [Anzahl in Mio.]	0,2	9,1	12,1	15,1	14,1	
Power-to-Heat (Fernwärme / Industrie) [GW]	0,8***	4,0	6,0	8,0	7,0	
Power-to-Gas [GW]	<0,1***	3,5	5,5	8,5	10,5	
Weitere Speich	er und nachfrages	eitige Flexibilitä	iten [GW]			
PV-Batteriespeicher	0,6	11,0	14,1	16,8	14,9	
Großbatteriespeicher	0,4	3,6	3,8	3,8	3,8	
DSM (Industrie und GHD)	1,5***	4,0	5,0	8,0	7,0	
	Klimaschu	ıtz				
CO ₂ -Limit (Mio. t CO ₂)	-	120,0	120,0	120,0	60,0	

Bei der Aufsummierung der Einzelwerte ergeben sich Rundungsabweichungen.

Quelle: Übertragungsnetzbetreiber -


^{*} sonstige konventionelle und regenerative Erzeugung jeweils inkl. 50 % Abfall

^{**} Dargestellt sind die Werte aus dem Genehmigungsdokument. Aufgrund der Vielzahl an flexiblen Verbrauchern und Variablen ergibt sich der exakte Stromverbrauch erst aus der Strommarktmodellierung.

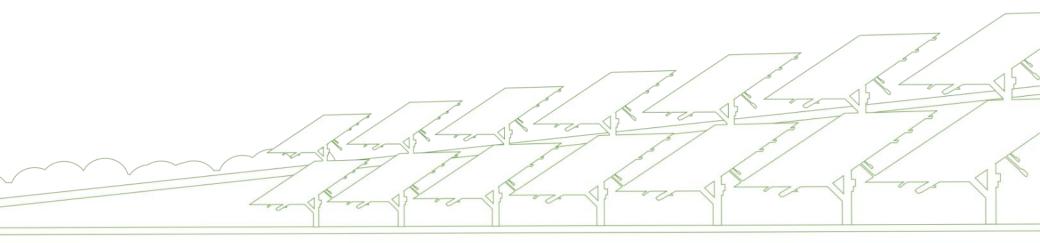
Verteilnetzorientierte Lastgangerstellung

Darstellung einer exemplarischen Januarwoche (B 2035) – bis zu 5 GW Verschiebung

Quelle: Übertragungsnetzbetreiber

Ergebnisse der EE-Spitzenkappung

- Spitzenkappung bei Onshore-Windenergie und PV wie in vorherigen NEPs
- Kappung von bis zu 3 % der prognostizierten Jahreseinspeisemenge in Abhängigkeit von der Struktur des Verteilnetzes
- Spitzenkappung bei Onshore-Windenergie in rund 3.500 Stunden und bei PV in rund 800 Stunden sowie in rund 220 Stunden Wind und PV; Reduktion max. auf 70 %
- Eingesenkte Energiemenge steigt gegenüber NEP 2030 (2019) um über 1 TWh an

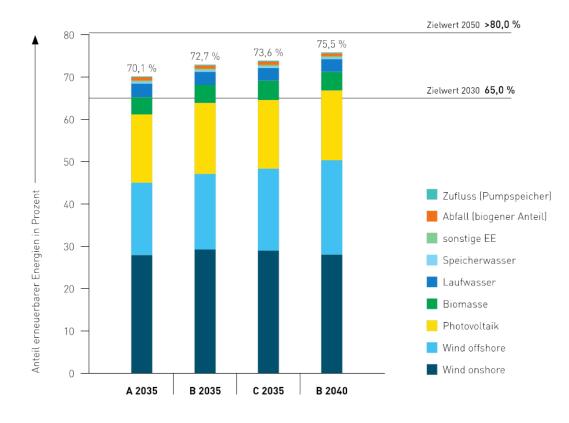

Eingesenkte Einspeisemengen Onshore-Windenergie und PV

Szenario	Eingesenkte Einspeisemenge Onshore-Windenergie (TWh)	Eingesenkte Einspeisemenge Photovoltaik (TWh)
A 2035	3,25	1,74
B 2035	3,55	1,75
C 2035	3,64	1,64
B 2040	3,61	1,85

Quelle: Übertragungsnetzbetreiber

Ergebnisse der Marktsimulationen

Stromerzeugung und Verbrauch in Deutschland

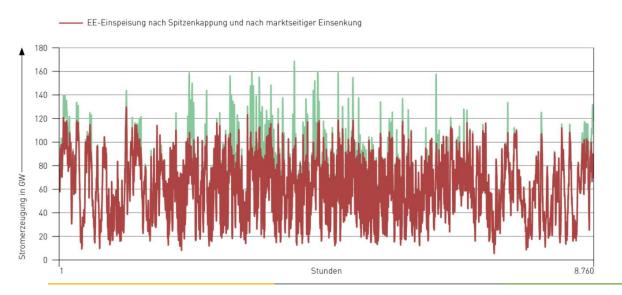


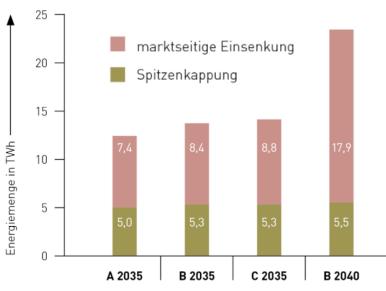
EE-Anteil am Bruttostromverbrauch steigt auf über 70 % in 2035 und über 75 % in 2040.

Flexible Verbraucher unterstützen die Integration der dargebotsabhängigen EE-Stromerzeugung. In Stunden mit dem höchsten Stromverbrauch trifft ein hohes EE-Angebot auf einen damit einhergehenden Strombezug von flexiblen Power-to-X-Technologien und Speichern.

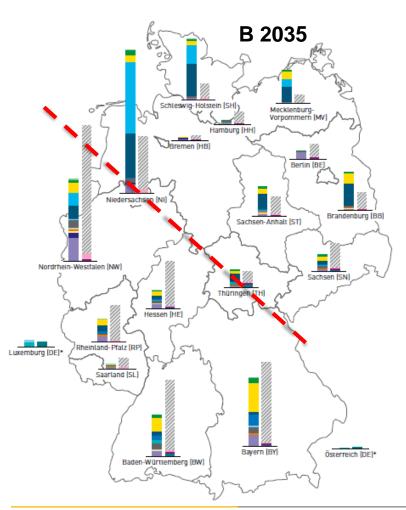
Konventionelle Stromerzeugung erfolgt überwiegend noch aus Erdgas und wird zunehmend durch EE-Erzeugung substituiert. Die Volllaststunden der konv. Kraftwerke sinken gegenüber heute deutlich.

EE-Anteil am Bruttostromverbrauch




Spitzenkappung und marktseitige Einsenkung von EE-Anlagen

- Rund 5 TWh Einspeisespitzen bereits vor der Marktsimulation absenkt (Spitzenkappung)
- Marktseitige Einsenkung der Stromerzeugung von EE-Anlagen (= EE-Erzeugung ohne korrespondierenden Verbrauch) nimmt deutlich zu – insbesondere in B 2040
- Deutliche Flexibilisierung der konv. Kraftwerke und des Stromverbrauchs unterstellt, aber deutlich höhere EE-Anteile in europäischen Nachbarstaaten

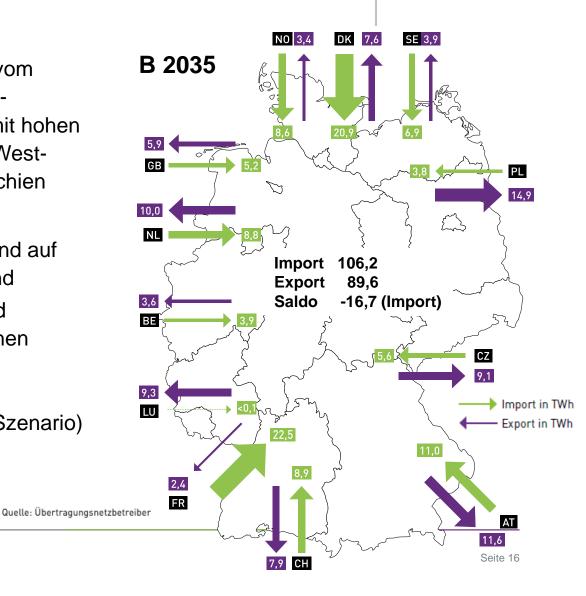

Abbildung 37: Zeitreihe der EE-Einspeisung vor und nach Spitzenkappung und marktseitiger Einsenkung im Szenario B 2040

NETZ ENTWICKLUNGS PLAN **STROM**

Starkes innerdeutsches Erzeugungsgefälle in allen Szenarien

Nord- und ostdeutsche Bundesländer mit deutlichem Erzeugungsüberschuss

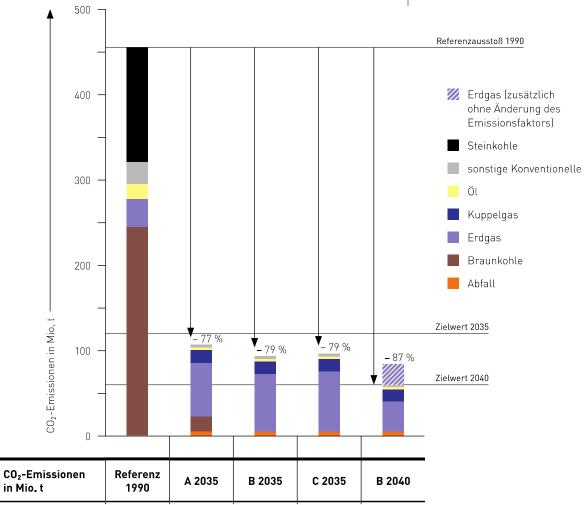
Süd- und Westdeutschland mit erheblichem Importbedarf


Handelsaustausch: Überblick und B 2035

 Deutschland wird in allen Szenarien vom Nettostromexporteur zum Nettostromimporteur (bis 22 TWh in B 2040) – mit hohen Importen aus Frankreich und einem West-Ost-Transport nach Polen und Tschechien

Gründe:

- Änderungen im Kraftwerkspark und auf der Nachfrageseite in Deutschland
- Entwicklung der Erzeugungs- und Verbrauchsstruktur im europäischen Umfeld, die zunehmend durch erneuerbare Energien geprägt ist (u.a. durch "Distributed Energy"-Szenario)
- Flexibilitäten im Ausland stützen zunehmend volatile EE-Integration

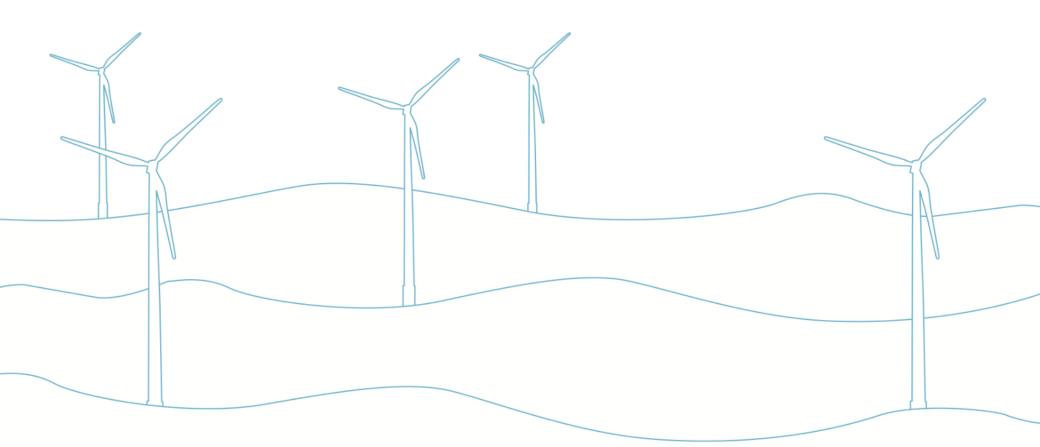


CO₂-Emissionen des deutschen Kraftwerksparks

- CO₂-Restriktionen für 2035 (120 Mio. t CO₂) werden ohne weitere Maßnahmen eingehalten bzw. unterschritten
- CO₂-Restriktionen für 2040 (60 Mio. t CO₂) können dagegen nur eingehalten werden, wenn in Erdgas-Kraftwerken rund 40 % CO₂-neutraler Brennstoff eingesetzt wird oder die Emissionen anderweitig reduziert werden

NETZ ENTWICKLUNGS PLAN **STROM**

Begleitdokument "Dekarbonisierung"


- Der Stromsektor kann durch zunehmende Sektorkopplung und damit Elektrifizierung zur CO₂-Reduktion in den Sektoren Verkehr, Wärme und Industrie beitragen.
- Im <u>Begleitdokument</u> werden die damit verbundenen CO₂-Emissionen mit Referenzemissionen in den anderen Sektoren verglichen.
- → Ergebnis: Sektorkopplung führt zu deutlichen Emissionsminderungen in anderen Sektoren (-28-54 Mio. t CO₂)

Wir freuen uns über Ihre Kommentare!

Offshore-Netzausbaubedarf

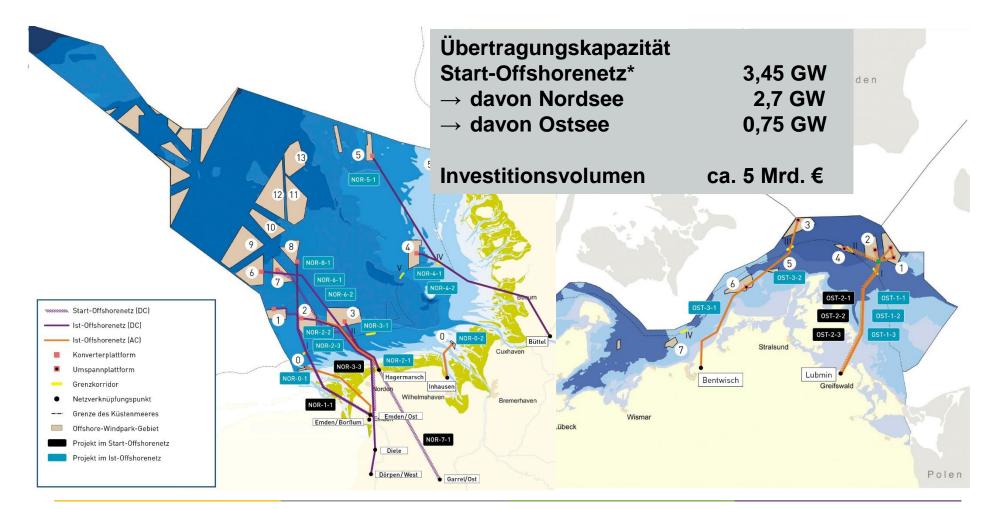
Ermittlung des Offshore-Netzausbaubedarfs

- NEP und FEP des BSH bilden zusammen mit den raumordnerischen Planungen der Küstenländer ein zusammenhängendes, aufeinander abgestimmtes Planwerk.
- Ausbauziele für Offshore-Windenergie It. genehmigtem Szenariorahmen:
 - 28 GW in Szenario A 2035,
 - 30 GW in Szenario B 2035 und
 - 32 GW national in Szenario C 2035 plus 2 GW Offshore-Windenergie aus einer ausländischen AWZ = 34 GW sowie
 - 40 GW im Szenario B 2040 entsprechend des Ziels aus der WindSeeG-Novelle.
- Der Zubau nach 2030 erfolgt gemäß Szenariorahmen ausschließlich in der Nordsee. Die ÜNB sehen in der Ostsee aber durchaus noch Potenzial.

12.02.2021

NETZ ENTWICKLUNGS PLAN **STROM**

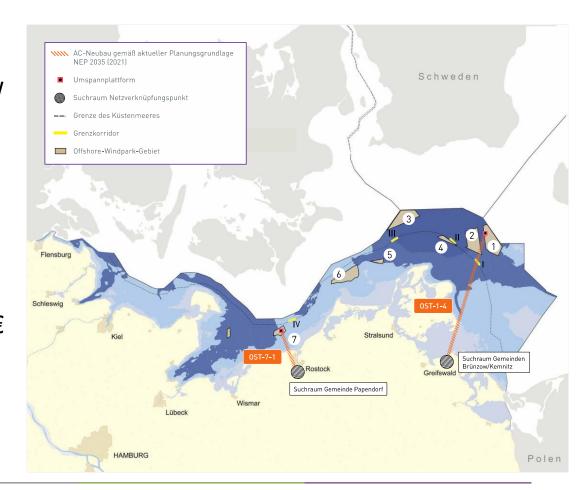
Kapazitäten, Übertragungsleistungen, Längen und Kosten der Offshore-Netzanbindungen


	Ausbauziel Nord-/ Ostsee [GW]	Istnetz Nord-/ Ostsee [GW]	Startnetz Nord-/ Ostsee [GW]	Zubaunetz Nord-/ Ostsee [GW]	Längen Start-/ Zubaunetz [km]	Kosten Start-/ Zubaunetz [Mrd. €]
A 2035	28 (25,6 / 2,4)	7,15 (6,1 + 1,05)	3,45 (2,7 / 0,45)	17,4 (16,8 / 0,6)	750 km + 3.210 km	5 + 28 = 33 Mrd. €
B 2035	30 (27,6 / 2,4)	7,15 (6,1 + 1,05)	3,45 (2,7 / 0,45)	19,4 (18,8 / 0,6)	750 km + 3.510 km	5 + 30,5 = 35,5 Mrd. €
C 2035	34 (31,6 / 2,4)	7,15 (6,1 + 1,05)	3,45 (2,7 / 0,45)	21,4 * (20,8 / 0,6)	750 km + 3.860 km*	5 + 33,5 = 38,5 Mrd. €*
B 2040	40 (37,6 / 2,4)	7,15 (6,1 + 1,05)	3,45 (2,7 / 0,45)	29,4 (28,8 / 0,6)	750 km + 5.850 km	5 + 50 = 55 Mrd. €

* ohne 2 GW aus ausländischer AWZ

Quelle: Übertragungsnetzbetreiber

Start-Offshorenetz Nordsee und Ostsee


Zubau-Offshorenetz Ostsee in A 2035, B 2035, C 2035 und B 2040

Übertragungskapazität Zubau-Offshorenetz (Ostsee) 0,6 GW

Gesamtlänge Zubau-Offshorenetze (Ostsee) 145 km

geschätzte Investitionen Zubau-Offshorenetz (Ostsee) 0,9 Mrd. €

Zubau-Offshorenetz Nordsee 2031-2040

NETZ ENTWICKLUNGS PLAN **STROM**

				Trassen- Über-		Szenario (Beginn der Umsetzung/geplante Fertigstellung)**			
Projekt	M-Nr.	Bezeichnung der Maßnahme	Netzver- knüpfungspunkt	länge	tragungs- leistung	A 2035	B 2035	C 2035	B 2040
NOR-11-1	M39	HGÜ-Verbindung NOR-11-1 (LanWin3)	Suchraum Gemeinden Ibbenbüren/ Mettingen/ Westerkappeln (Amprion)	ca. 370	2.000	2027 bzw. 2028/2032 bzw. 2033***	2027 bzw. 2028/2032 bzw. 2033***	2027 bzw. 2028/2032 bzw. 2033 ***	2027 bzw. 2028/2032 bzw. 2033 ***
NOR-11-2 bzw. NOR-12-1 ****	M242	HGÜ-Verbindung NOR-11-2 (LanWin4)	Wehrendorf (Amprion)	ca. 390	2.000	2026/2031***	2026/2031***	2026/2031***	2026/2031***
NOR-12-1 bzw. NOR-11-2 ****	M243	HGÜ-Verbindung NOR-12-1 (LanWin1)	Suchraum Zensenbusch (Amprion)	ca. 470	2.000	2030/2035***	2030/2035***	2030/2035***	2030/2035***
NOR-12-2 bzw. NOR-13-1 ****	M233	HGÜ-Verbindung NOR-12-2 (LanWin2)	Rastede (TenneT)	ca. 275	2.000	2029/2034***	2029/2034***	2029/2034***	2029/2034***
NOR-13-1 bzw. NOR-12-2 ****	M43	HGÜ-Verbindung NOR-13-1 (LanWin5)	Heide/West (TenneT)	ca. 295	2.000		2027 bzw. 2028/2032 bzw. 2033***	2027 bzw. 2028/2032 bzw. 2033***	2027 bzw. 2028/2032 bzw. 2033***
NOR-x-1 (Zone 4)	M284	HGÜ-Verbindung NOR-x-1 (Zone 4)	Rastede (TenneT)	ca. 350	2.000			2030/2035***	2031/2036***
NOR-x-2 (Zone 4)	M246	HGÜ-Verbindung NOR-x-2 (Zone 4)	Rommerskirchen (Amprion)	ca. 650	2.000				2032/2037***
NOR-x-3 (Zone 4)	M249	HGÜ-Verbindung NOR-x-3 (Zone 4)	Heide/West (TenneT)	ca. 310	2.000				2033/2038***
NOR-x-4 (Zone 4)	M247	HGÜ-Verbindung NOR-x-4 (Zone 4)	Oberzier (Amprion)	ca. 675	2.000				2034/2039***
NOR-x-5 (Zone 4)	M250	HGÜ-Verbindung NOR-x-5 (Zone 4)	Rastede (TenneT)	ca. 350	2.000				2035/2040***

20 GW Zubau zwischen 2031-2040:

10 x 2 GW

Aufteilung ÜNB:

5 x Amprion

5 x TenneT

Verteilung NVP:

2 x Schleswig-Holstein

4 x Niedersachsen

4 x NRW

NEP Strom 2035 (2021)

Zubau-Offshorenetz Nordsee

Gesamtkonzept küstennaher und lastnaher Netzverknüpfungspunkte:

Starke Zunahme der Offshore-Windenergie erfordert gesamtheitliches Konzept zur Integration der Offshore-Windenergie in das Übertragungsnetz

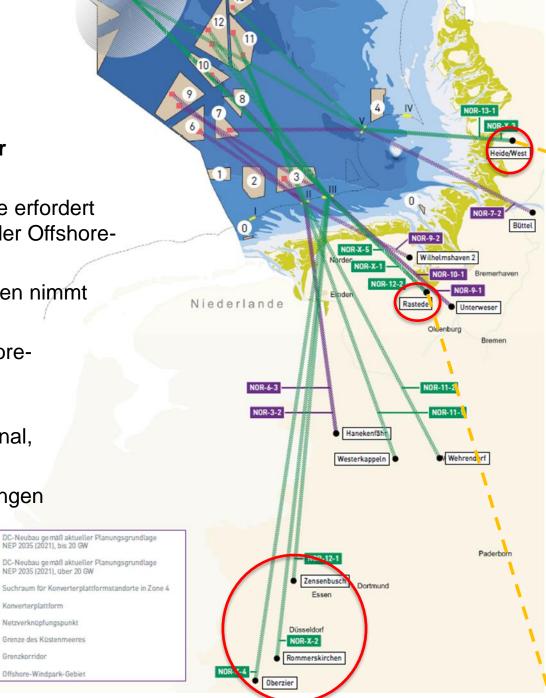
Nord-Süd-Transportbedarf in die Lastzentren nimmt zukünftig noch stärker zu

Gesamtkonzept zum Anschluss von Offshore-Windenergie besteht aus

weiterhin küstennahem Anschluss mit Option DC-Kopplung via Multiterminal, ggf. perspektivisch DC-Schaltanlage

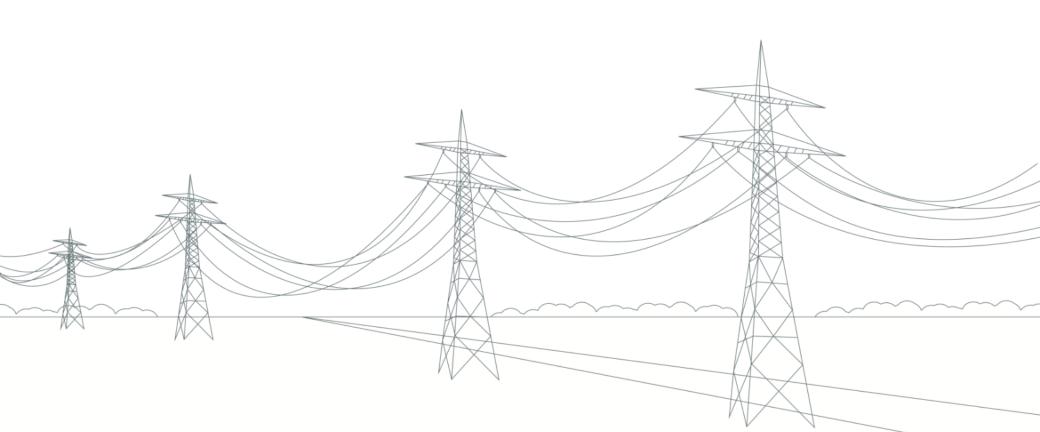
ab 2035 langen Offshore-Netzanbindungen

NEP 2035 (2021), bis 20 GW


Konverterplattform Netzverknüpfungspunkt

Grenzkorridor

Offshore-Windpark-Gebie

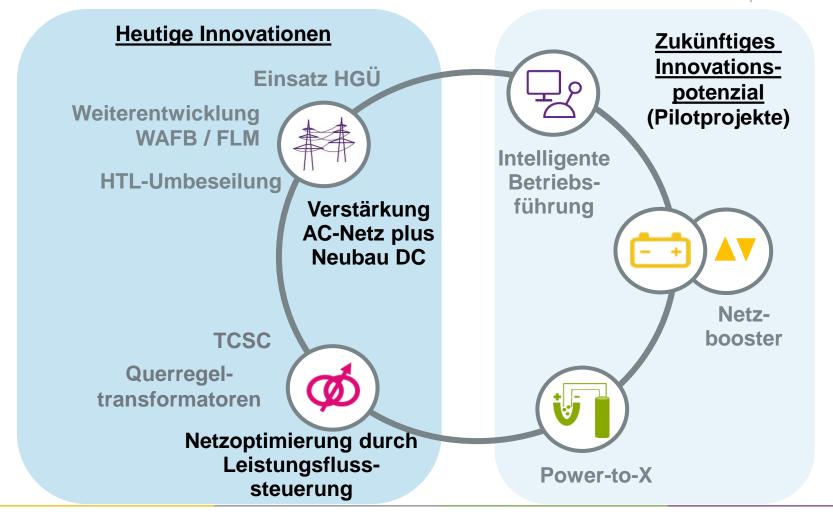

Grenze des Küstenmeeres

direkt in die Lastzentren in NRW zur Minimierung von zusätzlichem Netzausbau

Ergebnisse der Netzanalysen

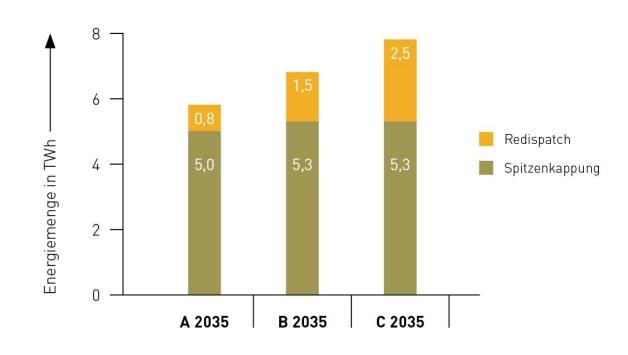
Zentrale Aspekte der Netzanalysen

- Deutliche Vergrößerung Umfang sowie Kostenvolumen des Startnetzes gegenüber dem Netzentwicklungsplan 2030 (2019), insbesondere wegen der Überführung der DC-Projekte DC1-5 vom Zubau- in das Startnetz
- Berücksichtigung der von der BNetzA im Zuge des NEP 2030 (2017) sowie des NEP 2030 (2019) bestätigten Ad-hoc-Maßnahmen, die den Leistungsfluss im AC-Netz optimieren, sowie implizite Berücksichtigung der im NEP 2030 (2019) bestätigten Netzbooster-Pilotanlagen in Kupferzell sowie Audorf/Süd und Ottenhofen.
- Informatorische Darstellung insbesondere der vertikalen Punktmaßnahmen im Begleitdokument Punktmaßnahmen.

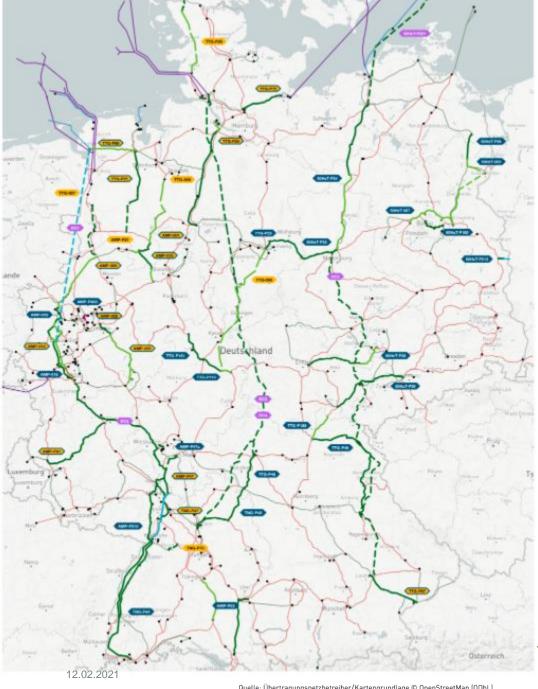

Zentrale Ergebnisse der Netzanalysen

- Implizite Berücksichtigung möglicher Potenziale zukünftiger innovativer Technologien wie im vorherigen NEP 2030 (2019) durch den nicht engpassfreien Ausbau des Übertragungsnetzes ("verbleibender Redispatch").
- Sämtliche Vorhaben des BBP 2021 sind sowohl in allen Szenarien mit dem Zieljahr 2035 als auch im Langfristszenario B 2040 erforderlich.
 Die Erforderlichkeit dieser Maßnahmen wird damit im NEP 2035 (2021) erneut bestätigt.
- Maßvoller Anstieg des Netzverstärkungs- und -ausbaubedarfs im NEP 2035 (2021) gegenüber dem BBP 2021:
 - rund 800 km an zusätzlichen Maßnahmen in A 2035 und B 2035 darunter eine DC-Verbindung (DC31, rund 210 km)
 - rund 1.460 km in C 2035 darunter eine weitere DC-Verbindung über A/B 2035 hinaus (DC34, rund 530 km)
- Darüber hinaus keine weiteren DC-Verbindungen in B 2040 erforderlich!

ÜNB setzen auf Innovationsmix zur Minimierung des zusätzlich erforderlichen Netzausbaubedarfs



Spitzenkappung und verbleibender Redispatch mit den Zielnetzen 2035


Verbleibender Redispatch von 0,8-2,5 TWh dient der impliziten Berücksichtigung zukünftiger Innovationen.

Verbundforschungsprojekt InnoSys2030 wird zeigen, ob/wie/wann die Potenziale hebbar sind.

→ Konkretisierung im kommenden NEP 2035 (2023) erforderlich

Quelle: Übertragungsnetzbetreiber

Startnetz NEP 2035 (2021)

Definition Startnetz:

Istnetz, EnLAG-Maßnahmen, planfestgestellte Maßnahmen bzw. Maßnahmen im Bau sowie Maßnahmen, bei denen das Planfeststellungsverfahren begonnen hat

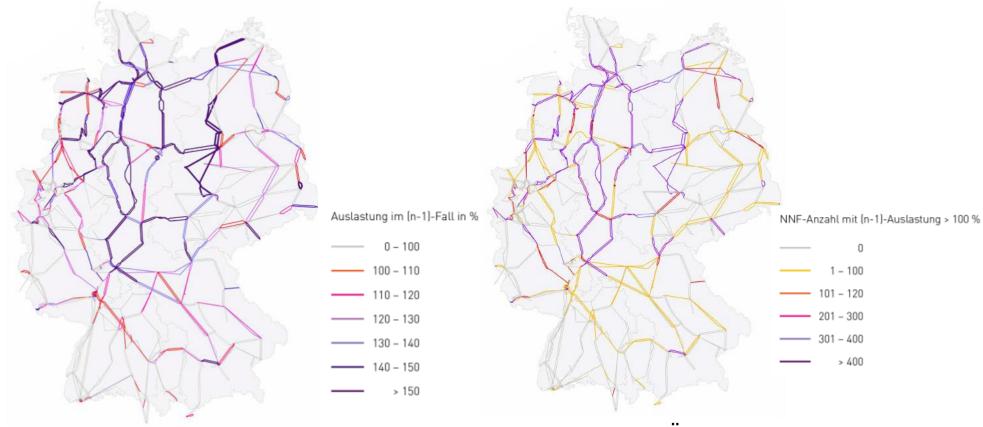
Gesamtumfang (AC + DC): rund 6.220 km darunter:

1.170 km Zu-/Umbeseilung:

Parallelneubau: 2.190 km

Neubau in neuer Trasse: 2.860 km

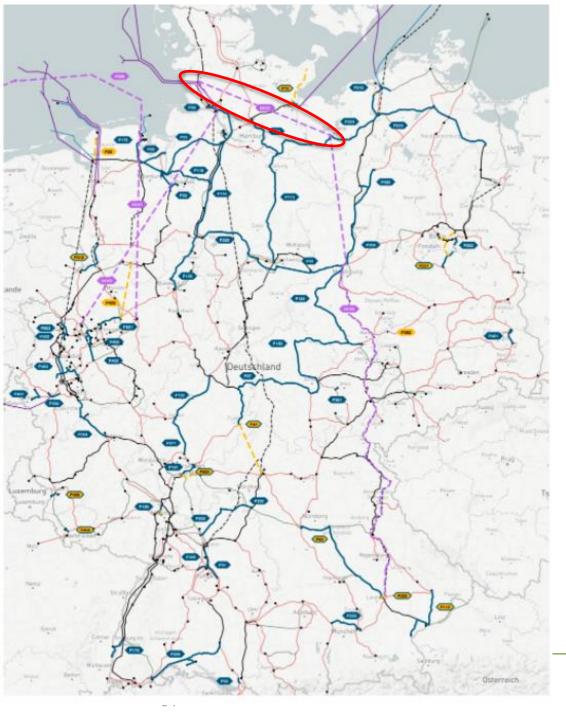
Investitionsvolumen: rund 38,5 Mrd. €


→ Deutlicher Zuwachs des Umfangs an Länge und Kosten durch Überführung der DC-Projekte DC1-DC5 in das Startnetz.

NETZ ENTWICKLUNGS PLAN **STROM**

Überlastungen im Startnetz mit Interkonnektoren

Maximale Auslastung und Häufigkeit der Überlastung je Stromkreis im (h-1)-Fall



Maximale Leitungsauslastung:

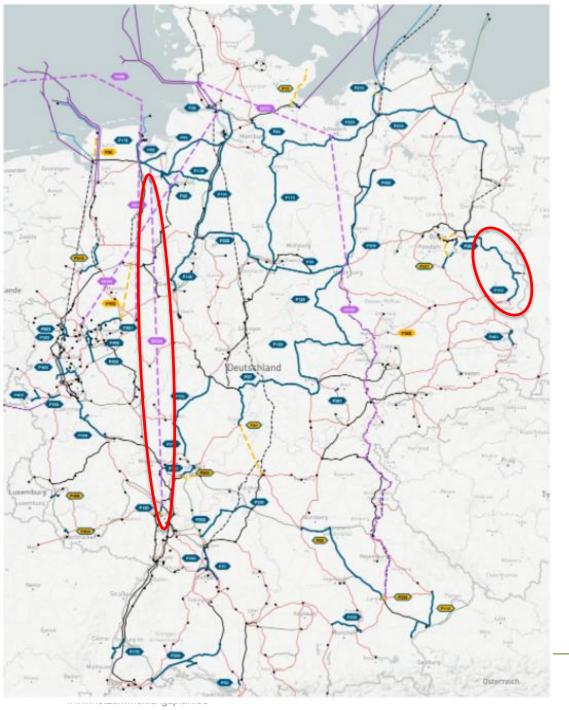
z.T. über 800 %

Quelle: Übertragungsnetzbetreiber

Häufigkeit der Überlastungen: z.T. rund 5.400 Stunden

Szenarien A/B 2035 inkl. Startnetz

Zu-/Umbeseilung 2.285 km davon AC / DC 1.985 / 300 km


Ersatz- / Parallelneubau 4.765 km davon AC / DC 4.195 / 570 km

Neubau in neuer Trasse 4.585 km davon AC / DC 1.020 / 3.565 km

Investitionsvolumen:

A 2035 72,5 Mrd. € **B 2035** 72 Mrd. €

Rund 800 km Netzmaßnahmen über BBP 2021 hinaus, darunter rund 590 km für AC-Maßnahmen und rund 210 km für DC31 – gleichermaßen in A und B 2035.

Szenario C 2035 inkl. Startnetz

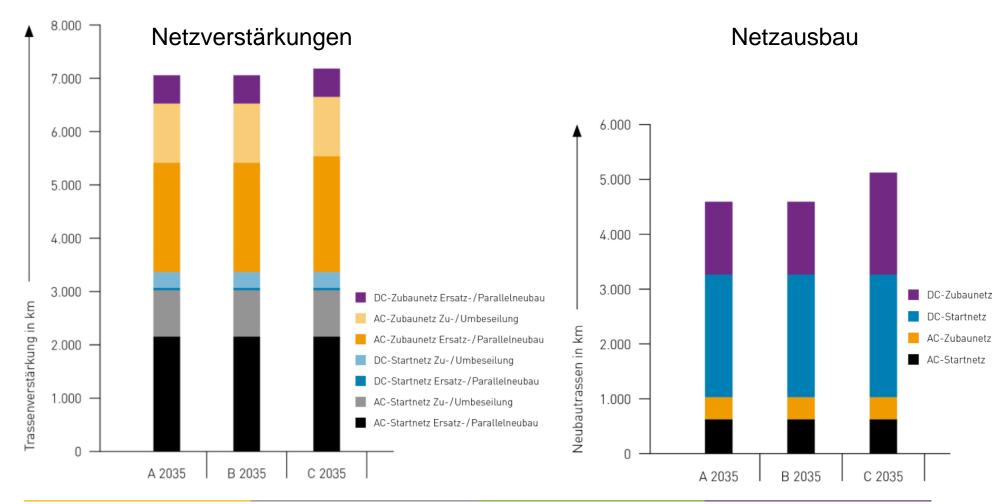
Zu-/Umbeseilung 2.285 km davon AC / DC 1.985 / 300 km

Ersatz- / Parallelneubau 4.890 km davon AC / DC 4.320 / 570 km

Neubau in neuer Trasse davon AC / DC

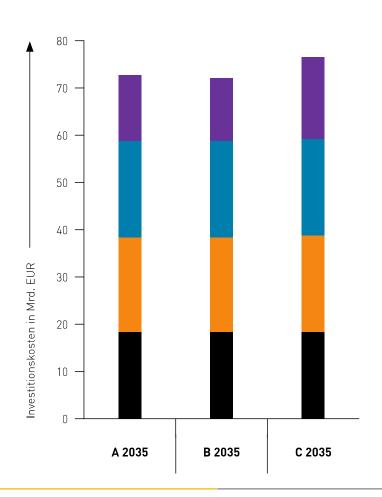
1.020 / 4.095 km

Investitionsvolumen:


76,5 Mrd. €

5.115 km

Rund 655 km Netzmaßnahmen über A/B 2035 hinaus: rund 125 km für P355 sowie rund 530 km für DC34.


Trotz massiven DC-Zubaus deutlich mehr Netzverstärkungen als Netzausbau bis 2035

Geschätzte Investitionskosten für die Onshore-Maßnahmen im NEP 2035 (2021)

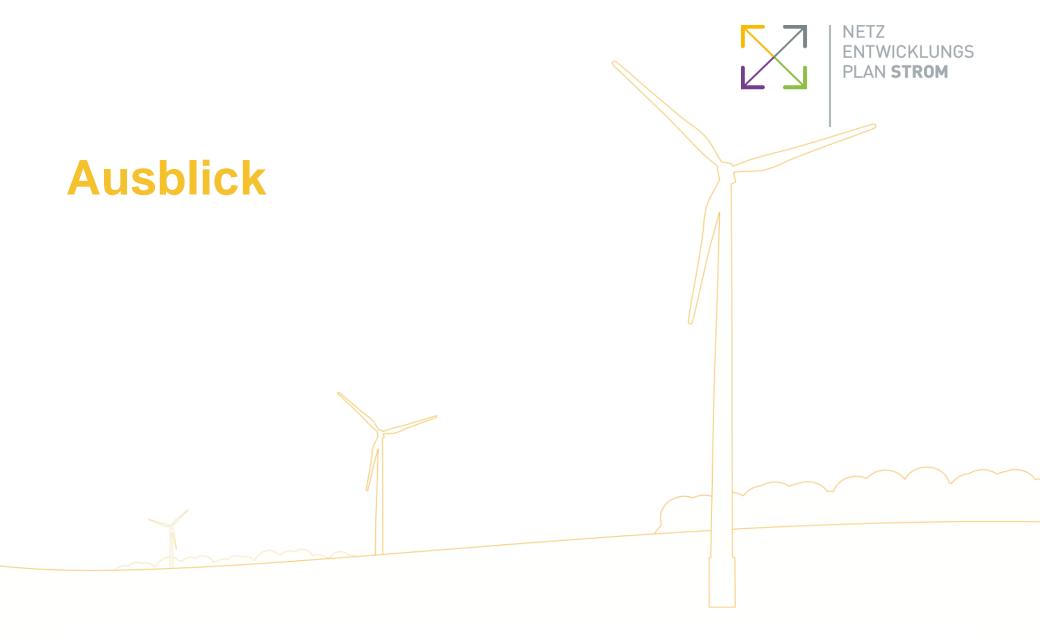
DC-Zubaunetz
DC-Startnetz
AC-Zubaunetz
AC-Startnetz

Angaben in Mrd. EUR	A 2035	B 2035	C 2035
DC-Zubaunetz	13,9	13,3	17,3
DC-Startnetz	20,4	20,4	20,4
AC-Zubaunetz*	20,0	20,0	20,4
AC-Startnetz*	18,3	18,3	18,3
Summe (gerundet)	72,5	72,0	76,5

^{*}inkl. Anlagen zur Blindleistungskompensation

Quelle: Übertragungsnetzbetreiber

Berücksichtigung von Erdkabeln (DC + AC)


- Bei allen **HGÜ-Verbindungen** mit Ausnahme von DC2 wird im NEP analog zum Erdkabelvorrang gemäß § 3 BBPIG grundsätzlich von einer **Vollverkabelung** (100 % Erdkabel) ausgegangen. In den Genehmigungsverfahren können sich auf Basis von Freileitungsprüfverlangen hiervon Abweichungen ergeben.
- Für AC-Verbindungen wurde im NEP in der Regel eine Realisierung als Freileitung angenommen. Lediglich bei den Projekten, die als Pilotprojekt zur Teil-Erdverkabelung gemäß § 2 EnLAG sowie § 4 BBPIG definiert sind, ist eine anteilige Erdverkabelung bei der Kostenkalkulation der Projekte berücksichtigt worden. Nähere Details finden sich bei fortgeschrittenen Projekten im jeweiligen Steckbrief im Anhang zum NEP.
- Die angenommenen Standardkosten können der Ubersicht auf www.netzentwicklungsplan.de entnommen werden.
- Grundsätzlich ist darauf hinzuweisen, dass die Mehrkosten einer Ausführung als Erdkabel im Vergleich zur Freileitung sowohl bei DC-Verbindungen als auch bei den AC-Pilotprojekten sehr stark von den örtlichen Gegebenheiten (z. B. Bodenbeschaffenheit) abhängen.

12.02.2021

Kosten-Nutzen-Analyse von Interkonnektoren aus dem TYNDP

- Aktuell wird eine Kosten-Nutzen-Analyse (CBA) für die nachfolgenden Interkonnektoren auf Basis der Szenarien B 2035 und B 2040 durchgeführt:
 - P74 Vöhringen Westtirol (DE AT)
 - P170 Uchtelfangen Ensdorf Bundesgrenze DE / FR Vigy
 - P204 Tiengen Bundesgrenze DE / CH Beznau
 - P221 HansaPowerBridge II (DE SE)
 - P313 Zweiter Interkonnektor Deutschland Belgien
 - P367 Emden / Ost Eemshaven (DE NL)
- Die aufgeführten Interkonnektoren sind entsprechend des genehmigten Szenariorahmens weder Bestandteil des Ausgangsnetzes des NEP 2035 (2021), noch der Szenarien.
- Die Beschreibung des Vorgehens bei der Kosten-Nutzen-Analyse sowie konkreten projektspezifischen Ergebnisse der Bewertung werden mit dem zweiten Entwurf des NEP 2035 (2021) veröffentlicht.

Weiterer Prozess: Konsultation und 2. Entwurf

- Der erste Entwurf des NEP steht noch bis zum 28.02.2021 zur Konsultation.
- Alle Interessierten haben in dieser Zeit die Gelegenheit, sich schriftlich zu äußern.
- Alle per E-Mail eingesandten oder über die Konsultationsmaske eingegebenen sachlichen Stellungnahmen, für die eine Einverständniserklärung vorliegt, werden online auf <u>www.netzentwicklungsplan.de</u> veröffentlicht.
- Die Veröffentlichung postalisch eingesandter Stellungnahmen ist nicht möglich.
- Die Stellungnahmen werden nicht individuell bestätigt oder beantwortet, sondern angemessen in den zweiten Entwurf des NEP eingearbeitet.
- Der zweite Entwurf des NEP 2035 (2021) soll It. EnWG bis Ende April 2021 veröffentlicht werden.
- Einen <u>Konsultationsleitfaden</u> sowie weitere <u>Informationen zur Konsultation</u> finden Sie auf <u>www.netzentwicklungsplan.de</u>.

12.02.2021

