Netzentwicklungsplan Strom 2030 (2019), zweiter Entwurf

NETZ ENTWICKLUNGS PLAN **STROM**

NETZ **ENTWICKLUNGS** PLAN **STROM Allgemeines**

Der Netzentwicklungsplan ...

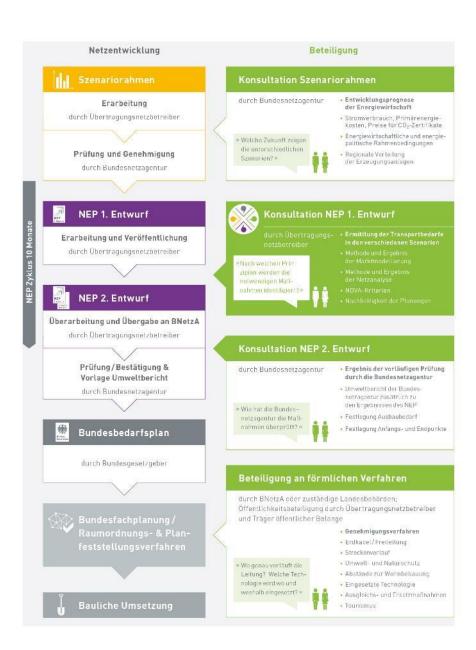
- ... ist der Netzentwicklungsplan für ein Übertragungsnetz an Land.
- ... bildet gemeinsam mit dem FEP und Raumordnungsplänen der Küstenländer ein zusammenhängendes und aufeinander abgestimmtes Planwerk für **Offshore-Netzanbindungen**.
- ... berücksichtigt die Integration erneuerbarer Energien und die Entwicklung des europäischen Strommarkts.
- ... beschreibt Maßnahmen, die den **gesetzlichen Anforderungen** und den **zugrunde gelegten Szenarien** gerecht werden.
- ... zeigt den Übertragungsbedarf zwischen Anfangs- und Endpunkten (zwei Netzknoten) und keine konkreten Trassenkorridore oder -verläufe.
- ... zeigt Maßnahmen mit Priorität auf **N**etz**o**ptimierung und -verstärkung vor -ausbau.
- ... zeigt den Ausbau des 380-kV-Drehstromnetzes und der Hochspannungs-Gleichstrom-Verbindungen (HGÜ) für den Übertragungsbedarf Nord-Süd.
- ... zeigt **keine zukünftigen Kraftwerksstandorte** und Standorte für EE-Anlagen, auch keine bevorzugten.

Der Prozess der Erstellung

Abbildung 2: Der Gesamtprozess

Quelle: Übertragungsnetzbetreiber

Zeitplan – wo stehen wir?



NEP und O-NEP 2030, Version 2017

- 22.12.2017 Bestätigung des NEP
- 22.12.2017 Bestätigung des O-NEP

NEP 2030, Version 2019

- 10.01.2018 Übergabe Szenariorahmen-Entwurf von ÜNB an BNetzA
- 15.06.2018 Genehmigung des Szenariorahmens (10-Monats-Frist beginnt)
- 04.02.2019 Veröffentlichung erster Entwurf
- 04.02. bis 04.03.2019 Konsultation erster Entwurf ÜNB
- 15.04.2019 Veröffentlichung zweiter Entwurf und Übergabe an BNetzA
- anschließend Prüfung und Konsultation durch die BNetzA
- bis Ende 2019: Bestätigung durch BNetzA ("Soll"-Frist It. EnWG)

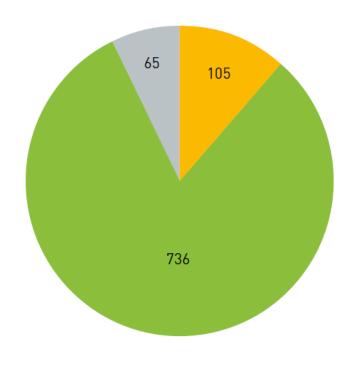
Netzentwicklungsplan 2030 (2019) Übersicht Konsultationsprozess

12.08.2019 Seite 6

Überblick

- Der erste Entwurf des NEP 2030 (2019) wurde am 04.02.2019 veröffentlicht und stand in der Zeit vom 04.02. bis zum 04.03.2019 zur Konsultation.
- Die ÜNB erreichten insgesamt 906 Stellungnahmen.
- Zum NEP 2030 (2019) wurden 763 Stellungnahmen durch Privatpersonen eingereicht. 143 Stellungnahmen kamen von Institutionen.
- Alle elektronisch eingegangenen Stellungnahmen, für die eine Einverständniserklärung vorliegt, wurden unter https://www.netzentwicklungsplan.de/de/stellungnahmen-nep-2030-2019 veröffentlicht.
- Eine individuelle Bestätigung und Beantwortung der Stellungnahmen erfolgt nicht.

Einarbeitung der Konsultationsergebnisse



- Die ÜNB haben die eingegangenen Stellungnahmen inhaltlich überprüft und den Netzentwicklungsplan 2030 (2019) auf dieser Basis überarbeitet.
- Im NEP wurden vor den relevanten Kapiteln vorgeschaltete Kästen mit den wesentlichen Änderungen sowie Aspekten aus der Konsultation eingebaut.
- Änderungen zum ersten Entwurf in den Kapiteln sind jeweils durch kursive Schrift kenntlich gemacht.
- Eine zusammenfassende Auseinandersetzung mit den Konsultationsbeiträgen erfolgt darüber hinaus in einem **eigenen Konsultationskapitel** (Kapitel 7).

Stellungnahmen nach Übermittlungswegen

Quelle: Übertragungsnetzbetreiber

Aufteilung nach Absendern

Absender	Anzahl der Stellungnahmen
Privatpersonen	763
Kommunen	69
Bürgerinitiativen	22
Bund/Länder	15
Energieunternehmen	12
Verbände	11
Umwelt-/Naturschutzverbände	7
Sonstige	4
Unternehmen	2
Wissenschaft und Forschung	1

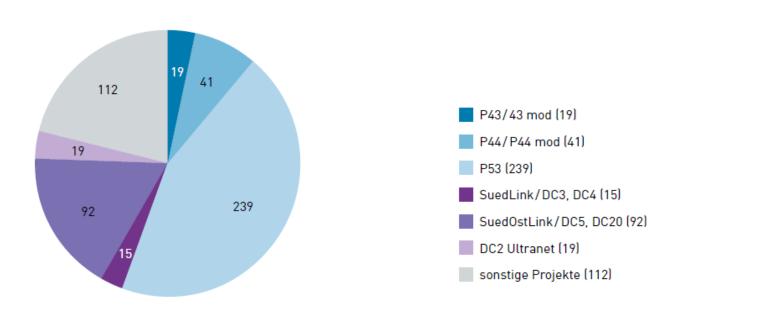
Im Vergleich zum NEP 2030 (2017) mit 2.133 Stellungnahmen ist die **Gesamtzahl an Konsultations-beiträgen** zum NEP 2030 (2019) um rund **57 % zurückgegangen**.

Der Rückgang der Stellungnahmen betrifft nahezu alle Absender / Stakeholder-Gruppen.

Die Zahl der Serienbriefe hat ebenfalls deutlich abgenommen.

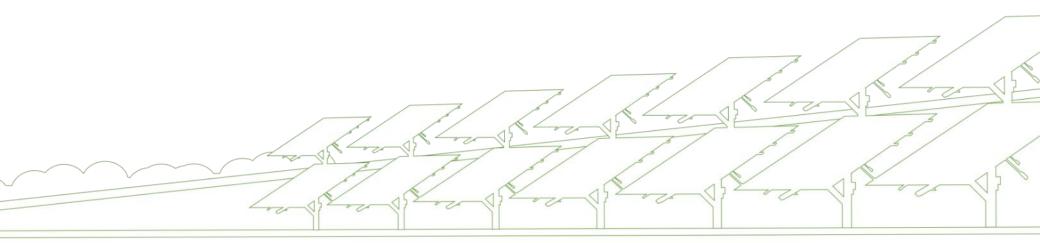
Quelle: Übertragungsnetzbetreiber

Themenschwerpunkte NEP

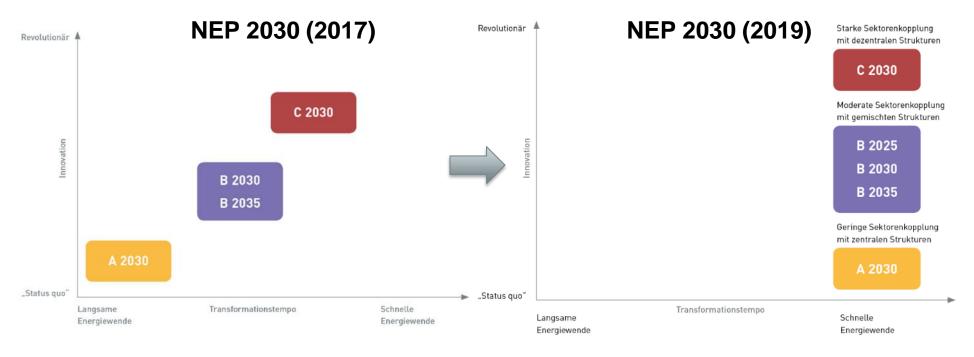

- Grundsätzliche Anmerkungen zu in den Szenarien getroffenen Eingangsgrößen,
 z. B. zur Berücksichtigung des Paris-Abkommens zum Klimaschutz und den
 Empfehlungen der Kommission für Wachstum, Strukturwandel und
 Beschäftigung zum Kohleausstieg.
- Ergebnisse der Marktsimulation und die Erfordernisse der Netzentwicklung incl. Berücksichtigung von Innovationen
- Regionale Betroffenheit von Netzentwicklungsprojekten, insbesondere
 - zwischen Mecklar und Bergrheinfeld/West (P43/P43mod),
 - zwischen Altenfeld und Grafenrheinfeld (P44/P44mod) und
 - zwischen Raitersaich, Ludersheim und Altheim (P53)
 - sowie die drei großen HGÜ-Verbindungen
 - von Nordrhein-Westfalen nach Baden-Württemberg (DC2),
 - von Schleswig-Holstein nach Bayern und Baden-Württemberg (DC3/DC4)
 - und von Sachsen-Anhalt nach Bayern (DC5 mit der Erweiterung DC20)

Stellungnahmen zu konkreten Projekten

Die weit überwiegende Zahl der Stellungnahmen von Privatpersonen bezieht sich auf konkrete Projekte.


Die Konzentration der Beiträge auf einige sehr konkrete Projekte hat zur Folge, dass mit rund **680 Stellungnahmen** etwa **75 %** aller Einsendungen aus der Regelzone von TenneT kamen, die meisten davon wiederum erneut aus Bayern.

Szenariorahmen


Wesentliche Elemente des genehmigten Szenariorahmens vom 15.06.2018

- Berücksichtigung EE-Ausbauziel aus Koalitionsvertrag 03/2018: 65% EE in 2030
- Berücksichtigung flow-based market coupling und Mindestvorgaben zu grenzüberschreitenden Kuppelkapazitäten analog zur EU-Diskussion
- Kosten-Nutzen-Analyse (CBA) zusätzlicher Interkonnektoren → 2. Entwurf
- Explizite CO₂-Vorgaben für Kraftwerkssektor in allen Szenarien gemäß Klimaschutzplan 2050 – abgestimmt mit UBA (ggf. mittels nationalem CO₂-Aufpreis)
- Spitzenkappung von max. 3 % der Jahresenergie bei Onshore-Windenergie und Photovoltaik in allen Szenarien als Element der Netzplanung
- Ehrgeizige Annahmen zu Sektorkopplung (E-Mobilität, Wärmepumpen),
 Flexibilitäten (PtX, DSM) und Speichern (dezentral und zentral) ansteigend von A nach C 2030 → NEP auf der Höhe der Zeit der Diskussion
- Berechnung von insgesamt fünf Szenarien:
 - Kurzfrist-Szenario B 2025: Ad-hoc-Maßnahmen / Redispatch-Vermeidung
 - Zielszenarien A 2030, B 2030, C 2030
 - Langfristszenario B 2035: Prüfung der Nachhaltigkeit der Maßnahmen

Einordnung der Szenarien

Quelle: Bundesnetzagentur: Genehmigung des Szenariorahmens 2019 – 2030

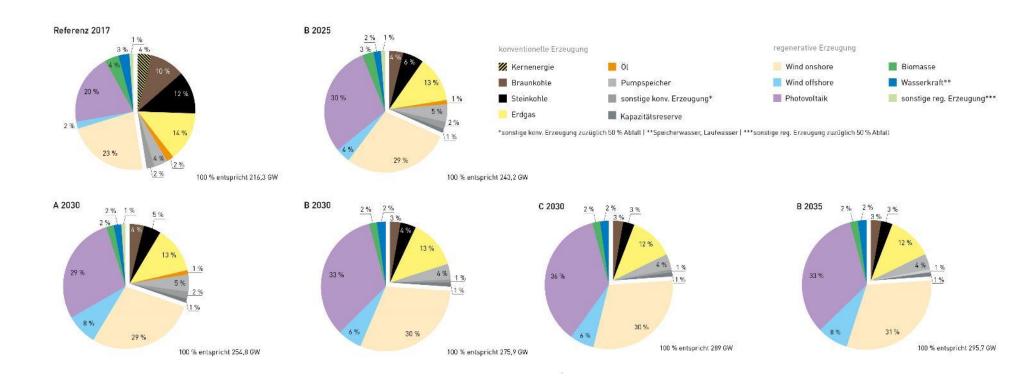
→ Die Szenarien unterscheiden sich nicht mehr beim Transformationstempo, sondern nur noch bei der Innovation (Durchdringung mit Sektorkopplung, Flexibilitäten und Speichern) sowie beim Zubau der einzelnen EE-Technogien

Konventionelle Erzeugungskapazitäten

Installiert (GW)	Referenz 2017	B 2025	A 2030	B 2030	C 2030	B 2035
Kernenergie	9,5	0,0	0,0	0,0	0,0	0,0
Braunkohle	21,2	9,4	9,4	9,3	9,0	9,0
Steinkohle	25,0	13,5	13,5	9,8	8,1	8,1
Erdgas	29,6	32,5	32,8	35,2	33,4	36,9
Öl	4,4	1,3	1,3	1,2	0,9	0,9
Pumpspeicher	9,5	11,6	11,6	11,6	11,6	11,8
sonstige konv. Erzeugung*1	4,3	4,1	4,1	4,1	4,1	4,1
Kapazitätsreserve	0,0	2,0	2,0	2,0	2,0	2,0
Summe konv. Erzeugung*2	103,5	74,4	74,7	73,2	69,1	72,8

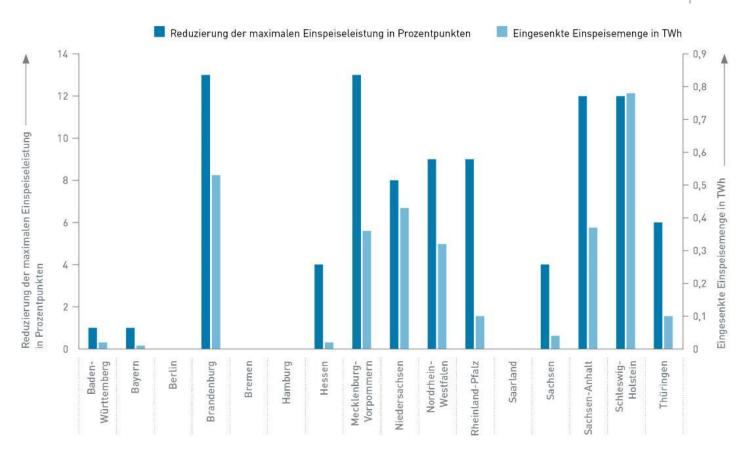
Regenerative Erzeugungskapazitäten

Installiert (GW)	Referenz 2017	B 2025	A 2030	B 2030	C 2030	B 2035
Wind onshore	50,5	70,5	74,3	81,5	85,5	90,8
Wind offshore	5,4	10,8	20,0	17,0	17,0	23,2
Photovoltaik	42,4	73,3	72,9	91,3	104,5	97,4
Biomasse	7,6	7,3	6,0	6,0	6,0	4,6
Wasserkraft*³	5,6	5,6	5,6	5,6	5,6	5,6
sonstige reg. Erzeugung*4	1,3	1,3	1,3	1,3	1,3	1,3
Summe reg. Erzeugung	112,8	168,8	180,1	202,7	219,9	222,9


Übersicht über die Szenarien

	A 2030	В 2030	C 2030	В 2035
Konventionelle Kraftwerke	74,7 GW (22,9 GW Kohle)	73,2 GW (19,1 GW Kohle)	69,1 GW (17,1 GW Kohle)	72,8 GW (17,1 GW Kohle)
Installierte Leistung erneuerbarer Energien (gerundet)	180 GW (+40 GW) 20 GW Offshore 74 GW Onshore 73 GW PV	203 GW (+50 GW) 17 GW Offshore 82 GW Onshore 91 GW PV	220 GW (+50 GW) 17 GW Offshore 86 GW Onshore 105 GW PV	223 GW 23,2 GW Offshore 91 GW Onshore 97 GW PV
Nettostromverbrauch	512 TWh	544 TWh	577 TWh	549 TWh
Spitzenkappung Wind onshore/PV	Ja	Ja	Ja	Ja
Ausprägung der Sektorenkopplung	Mittel	Hoch	Sehr hoch	Hoch
Anteil an Flexibilitätsoptionen und Speicher	Mittel	Hoch	Sehr hoch	Hoch
Emissionsgrenze KW-Park	184 Mio. t CO ₂	184 Mio. t CO ₂	184 Mio. t CO ₂	127 Mio. t CO ₂

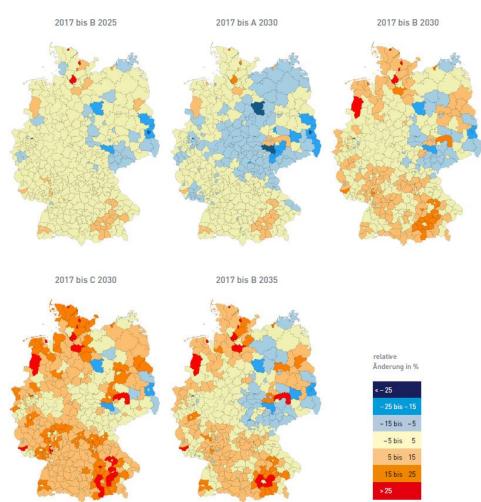
Ergebnisse der EE-Spitzenkappung

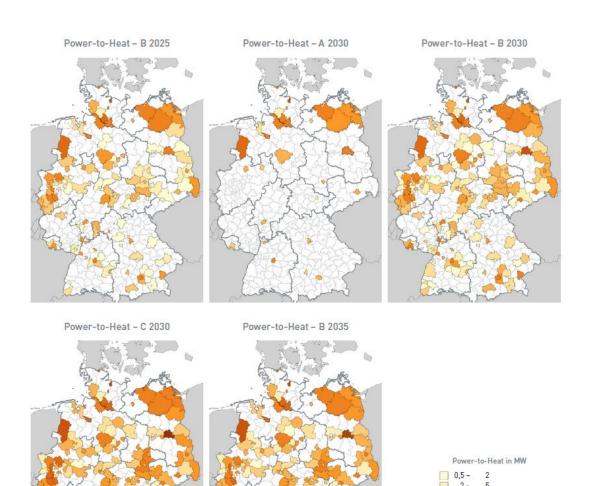


Szenario	Eingesenkte Einspeisemenge Onshore-Windenergie (TWh)	Eingesenkte Einspeisemenge Photovoltaik (TWh)
B 2025	2,6	0,8
A 2030	2,8	0,8
B 2030	3,1	1,0
C 2030	3,2	1,1
B 2035	3,4	1,0

Eingesenkte Einspeisemengen Onshore-Windenergie und PV

Spitzenkappung Wind onshore nach Bundesländern



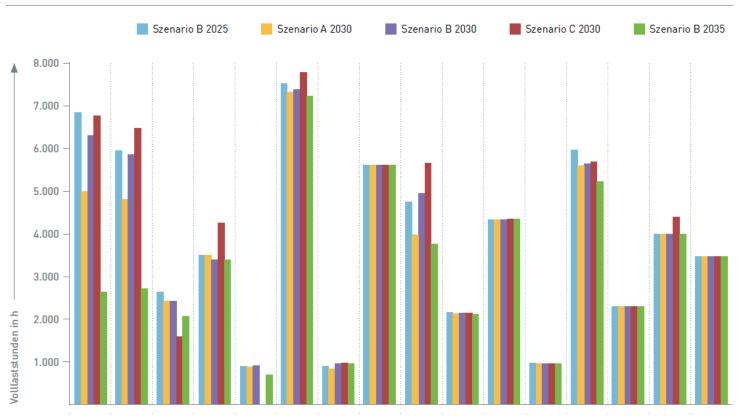

Quelle: Übertragungsnetzbetreiber

Veränderung der Nettostromnachfrage je LK incl. Sektorkopplung und PtG/PtH

NETZ ENTWICKLUNGS PLAN **STROM**

- Höhere Nachfrage in urbanen Regionen und angrenzenden Ballungsgebieten
- Sinkende Nachfrage im Großteil der Landkreise in den östlichen Bundesländern und eher ländlichen Regionen
- Haupttreiber der regionalen Stromnachfrage sind u.a. die angenommene Bevölkerungsentwicklung oder die regionale Durchdringung mit E-Mobilität und Wärmepumpen sowie Standorte mit PtG-/PtH-Anlagen

Regionalisierung und Einsatz von Flexibilitätsoptionen, hier: Power-to-Heat-Anlagen

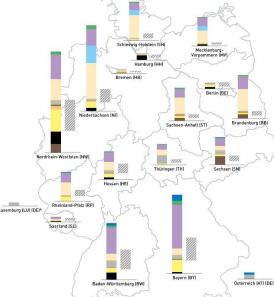

Quelle: Obertragungsnetzbetreiber

Angenommene regionale Verteilung von Power-to-Heat-Anlagen in Deutschland

Volllaststunden je Szenario

Abbildung 46: Vergleich der Volllaststunden je Szenario des NEP 2030 (2019)

Installierte Leistungen je Bundesland Szenario B 2025



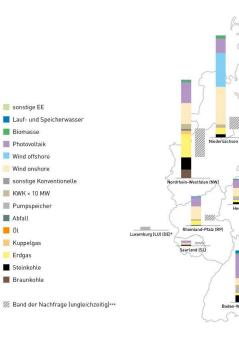
FNTWICKLUNGS PLAN STROM

B 2025	Braun-	Stein-	Erdgas	Kuppel-	ÖL	Abfall	Pump-	KWK	sonstige Konven-	Wind	Wind	Photo-	Bio-	Lauf- und Speicher-	sonstige	Band der		usätzlich erbrauch	
(in GW)	kohle	kohle	Liugas	gas	O.	Abiatt	speicher	< 10 MW	tionelle	onshore	offshore	voltaik	masse	wasser	EE	Nachfrage	DSM	PtG	PtH
BW	0,0	2,8	1,9	0,0	0,1	0,1	1,9	1,0	0,0	2,6	0,0	10,4	0,8	1,0	0,0	4,1 – 11,9	0,3	0,0	0,5
BY	0,0	0,5	4,9	0,0	0,0	0,2	0,8	0,9	0,0	2,6	0,0	17,5	1,5	2,4	0,1	5,1 - 14,2	0,4	0,0	0,5
BE	0,0	0,7	1,0	0,0	0,0	0,0	0,0	0,2	0,0	0,0	0,0	0,5	0,0	0,0	0,0	0,9 - 2,5	0,1	0,0	0,2
вв	1,6	0,0	0,5	0,1	0,3	0,1	0,0	0,3	0,0	8,7	0,0	5,1	0,5	0,0	0,0	1,1 - 2,9	0,1	0,0	0,1
НВ	0,0	0,1	0,5	0,2	0,0	0,1	0,0	0,1	0,0	0,5	0,0	0,2	0,0	0,0	0,0	0,3 - 0,8	0,0	0,0	0,2
нн	0,0	1,8	0,2	0,0	0,0	0,0	0,0	0,2	0,0	0,1	0,0	0,2	0,1	0,0	0,0	0,9 - 2,0	0,1	0,0	0,2
HE	0,0	0,7	1,6	0,0	0,0	0,1	0,6	0,5	0,0	3,3	0,0	3,8	0,3	0,1	0,0	2,4 - 6,2	0,2	0,0	0,1
MV	0,0	0,5	0,3	0,0	0,0	0,0	0,0	0,2	0,0	5,0	1,8	3,2	0,3	0,0	0,0	0,5 - 1,3	0,0	0,0	0,4
NI	0,0	1,2	2,4	0,3	0,0	0,1	0,2	0,7	0,0	14,3	6,9	6,6	1,4	0,1	0,0	3,4 - 8,7	0,4	0,1	0,8
NW	3,3	5,0	8,8	1,3	0,2	0,5	0,3	1,3	0,2	8,4	0,0	9,8	0,9	0,2	0,4	8,7 - 21,1	0,8	0,1	1,3
RP	0,0	0,0	1,8	0,0	0,0	0,1	0,0	0,3	0,0	5,2	0,0	3,8	0,2	0,2	0,0	2,0 - 4,4	0,2	0,0	0,1
SL	0,0	0,3	0,2	0,1	0,0	0,0	0,0	0,1	0,0	0,4	0,0	0,9	0,0	0,0	0,1	0,5 - 1,5	0,1	0,0	0,1
SN	3,4	0,0	0,8	0,0	0,0	0,0	1,1	0,4	0,0	1,8	0,0	3,1	0,3	0,1	0,0	1,4 - 3,6	0,1	0,0	0,1
ST	1,0	0,0	0,8	0,0	0,2	0,2	0,1	0,3	0,0	6,4	0,0	3,4	0,5	0,0	0,0	1,0 - 2,5	0,1	0,1	0,1
SH	0,0	0,1	0,5	0,0	0,0	0,0	0,1	0,3	0,1	9,0	2,1	2,8	0,5	0,0	0,0	0,9 - 2,7	0,1	0,0	1,0
тн	0,0	0,0	0,5	0,0	0,0	0,0	3,0	0,3	0,0	2,2	0,0	2,0	0,3	0,0	0,0	0,8 - 2,2	0,1	0,0	0,1
AT (DE)*	0,0	0,0	0,0	0,0	0,0	0,0	1,6	0,0	0,0	0,0	0,0	0,0	0,0	8,0	0,0	0,0 - 0,0	0,0	0,0	0,0
LU (DE)*	0,0	0,0	0,0	0,0	0,0	0,0	1,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0 - 0,0	0,0	0,0	0,0
Summe**	9,4	13,5	26,5	2,0	0,9	1,7	11,0	6,8	0,4	70,5	10,8	73,3	7,6	5,1	0,6	34,4 - 88,2	3,0	0,5	5,8

12.08.2019

^{*} Erzeugungsanlagen im Ausland mit Einspeisung in das deutsche Übertragungsnetz

^{**} Bei der Aufsummierung der Einzelwerte können sich Rundungsabweichungen ergeben.


^{***} Das Band der Nachfrage umfasst den klassischen Stromverbrauch sowie Wärmepumpen, Elektromobilität und VNB-Verluste ohne Einsatz von DSM, Power-to-Gas /-Heat.

Installierte Leistungen je Bundesland Szenario A 2030

NETZ ENTWICKLUNGS PLAN STROM

A 2030	Braun-	Stein-	Erdgas	Kuppel-	ÖL	Abfall	Pump-	KWK	sonstige Konven-	Wind	Wind	Photo-	Bio-	Lauf- und Speicher-	sonstige	Band der		usätzlich erbrauch	
(in GW)	kohle	kohle	Erugas	gas	Ot	ADIALL	speicher	< 10 MW	tionelle	onshore	offshore	voltaik	masse	wasser	EE	Nachfrage	DSM	PtG	PtH
BW	0,0	2,8	1,0	0,0	0,1	0,1	1,9	1,1	0,0	2,8	0,0	9,6	0,7	1,0	0,0	4,0 - 11,5	0,2	0,0	0,2
BY	0,0	0,5	3,9	0,0	0,0	0,2	0,8	1,1	0,0	2,6	0,0	17,9	1,2	2,4	0,1	5,0 – 13,6	0,3	0,1	0,1
BE	0,0	0,7	1,1	0,0	0,0	0,0	0,0	0,2	0,0	0,0	0,0	0,4	0,0	0,0	0,0	0,8 - 2,4	0,0	0,0	0,1
ВВ	1,6	0,0	0,6	0,1	0,3	0,1	0,0	0,4	0,0	9,3	0,0	6,3	0,4	0,0	0,0	1,1 - 2,7	0,1	0,1	0,0
НВ	0,0	0,1	0,5	0,2	0,0	0,1	0,0	0,1	0,0	0,5	0,0	0,2	0,0	0,0	0,0	0,3 - 0,8	0,0	0,0	0,2
нн	0,0	1,8	0,2	0,0	0,0	0,0	0,0	0,3	0,0	0,1	0,0	0,2	0,0	0,0	0,0	0,9 - 2,0	0,1	0,0	0,2
HE	0,0	0,7	1,0	0,0	0,0	0,1	0,6	0,6	0,0	3,4	0,0	3,3	0,2	0,1	0,0	2,3 - 5,9	0,1	0,0	0,0
MV	0,0	0,5	0,3	0,0	0,0	0,0	0,0	0,2	0,0	5,4	2,2	4,5	0,3	0,0	0,0	0,4 - 1,2	0,0	0,0	0,3
NI	0,0	1,2	2,6	0,3	0,0	0,1	0,2	0,8	0,0	15,4	13,8	5,9	1,1	0,1	0,0	3,3 - 8,3	0,2	0,2	0,5
NW	3,3	5,0	9,5	1,3	0,2	0,5	0,3	1,5	0,2	8,6	0,0	8,5	0,7	0,2	0,4	8,5 - 20,2	0,6	0,3	0,0
RP	0,0	0,0	1,9	0,0	0,0	0,1	0,0	0,4	0,0	5,3	0,0	3,7	0,1	0,2	0,0	1,9 - 4,2	0,1	0,1	0,0
SL	0,0	0,3	0,2	0,1	0,0	0,0	0,0	0,1	0,0	0,4	0,0	0,8	0,0	0,0	0,1	0,5 – 1,5	0,0	0,0	0,0
SN	3,4	0,0	0,8	0,0	0,0	0,0	1,1	0,5	0,0	1,8	0,0	3,1	0,3	0,1	0,0	1,4 - 3,4	0,1	0,1	0,0
ST	1,0	0,0	0,8	0,0	0,2	0,2	0,1	0,4	0,0	6,6	0,0	3,8	0,4	0,0	0,0	1,0 - 2,3	0,1	0,1	0,0
SH	0,0	0,1	0,6	0,0	0,0	0,0	0,1	0,3	0,1	9,6	4,0	2,9	0,4	0,0	0,0	0,8 - 2,6	0,1	0,1	0,7
TH	0,0	0,0	0,5	0,0	0,0	0,0	3,0	0,3	0,0	2,4	0,0	2,0	0,2	0,0	0,0	0,7 - 2,0	0,0	0,0	0,0
AT (DE)*	0,0	0,0	0,0	0,0	0,0	0,0	1,6	0,0	0,0	0,0	0,0	0,0	0,0	8,0	0,0	0,0 - 0,0	0,0	0,0	0,0
LU (DE)*	0,0	0,0	0,0	0,0	0,0	0,0	1,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0 - 0,0	0,0	0,0	0,0
Summe**	9,4	13,5	25,5	2,0	0,9	1,7	11,0	8,3	0,4	74,3	20,0	72,9	6,0	5,1	0,6	33,5 - 84,4	2,0	1,0	2,5

12.08.2019

^{*} Erzeugungsanlagen im Ausland mit Einspeisung in das deutsche Übertragungsnetz

^{**} Bei der Aufsummierung der Einzelwerte können sich Rundungsabweichungen ergeben.

^{***} Das Band der Nachfrage umfasst den klassischen Stromverbrauch sowie Wärmepumpen, Elektromobilität und VNB-Verluste ohne Einsatz von DSM, Power-to-Gas / -Heat.

Installierte Leistungen je Bundesland Szenario B 2030

B 2030	Braun-	Stein-	water	Kuppel-			Pump-	KWK	sonstige	Wind	Wind	Photo-	Bio-	Lauf- und	sonstige	Band der		usätzlio erbrauc		-
(in GW)	kohle	kohle	Erdgas	gas	Öl	Abfall		< 10 MW	Konven- tionelle		offshore		masse	Speicher- wasser	EE	Nachfrage		PtG		
BW	0,0	2,7	1,9	0,0	0,1	0,1	1,9	1,1	0,0	3,2	0,0	12,5	0,7	1,0	0,0	4,1 – 12,8	0,4	0,0	0,8	
ву	0,0	0,0	4,9	0,0	0,0	0,2	0,8	1,1	0,0	2,6	0,0	20,7	1,2	2,4	0,1	5,2 - 15,2	0,5	0,1	0,8	
BE	0,0	0,0	1,4	0,0	0,0	0,0	0,0	0,2	0,0	0,0	0,0	0,7	0,0	0,0	0,0	0,9 - 2,6	0,1	0,0	0,6	
вв	1,6	0,0	0,5	0,1	0,3	0,1	0,0	0,4	0,0	10,0	0,0	6,5	0,4	0,0	0,0	1,1 - 3,0	0,1	0,1	0,2	
нв	0,0	0,1	0,5	0,2	0,0	0,1	0,0	0,1	0,0	0,5	0,0	0,3	0,0	0,0	0,0	0,3 - 0,8	0,0	0,0	0,3	
нн	0,0	1,8	0,2	0,0	0,0	0,0	0,0	0,3	0,0	0,1	0,0	0,4	0,0	0,0	0,0	0,9 - 2,1	0,1	0,0	0,3	sonstige EE
HE	0,0	0,5	1,8	0,0	0,0	0,1	0,6	0,6	0,0	3,6	0,0	4,9	0,2	0,1	0,0	2,4 - 6,6	0,2	0,0	0,4	Lauf- und Speicherwasser Biomasse
MV	0,0	0,5	0,3	0,0	0,0	0,0	0,0	0,2	0,0	6,3	2,3	4,4	0,3	0,0	0,0	0,5 - 1,4	0,0	0,1	0,5	
NI	0,0	0,9	2,6	0,3	0,0	0,1	0,2	0,8	0,0	17,1	10,8	8,4	1,1	0,1	0,0	3,4 - 9,3	0,5	0,3	1,1	Wind offshore
ıw	3,3	3,3	9,0	1,3	0,2	0,5	0,3	1,5	0,2	9,2	0,0	12,7	0,7	0,2	0,4	8,6 - 22,0	1,1	0,6	2,0	Wind onshore sonstige Konventionelle
₹P	0,0	0,0	1,8	0,0	0,0	0,1	0,0	0,4	0,0	5,7	0,0	4,8	0,1	0,2	0,0	2,0 - 4,7	0,2	0,1	0,2	KWK < 10 MW
iL	0,0	0,0	0,3	0,1	0,0	0,0	0,0	0,1	0,0	0,4	0,0	1,1	0,0	0,0	0,1	0,5 - 1,6	0,1	0,0	0,2	Pumpspeicher
5N	3,3	0,0	0,9	0,0	0,0	0,0	1,1	0,5	0,0	1,8	0,0	3,8	0,3	0,1	0,0	1,4 - 3,7	0,1	0,1	0,3	Abfall
ST	1,0	0,0	0,8	0,0	0,2	0,2	0,1	0,4	0,0	6,7	0,0	4,2	0,4	0,0	0,0	1,0 - 2,6	0,1	0,2	0,2	− ■ Öl Kuppelgas
SH	0,0	0,0	0,5	0,0	0,0	0,0	0,1	0,3	0,1	11,3	4,0	3,6	0,4	0,0	0,0	0,9 - 3,0	0,1		1,1	nappeigas
тн	0,0	0,0	0,5	0,0	0,0	0,0	3,0	0,3	0,0	3,0	0,0	2,5	0,2	0,0	0,0	0,7 - 2,2	0,1	0,0	0,1	■ Steinkohle
AT (DE)*	0,0	0,0	0,0	0,0	0,0	0,0	1,6	0,0	0,0	0,0	0,0	0,0	0,0	0,8	0,0	0,0 - 0,0	0,0	0,0	0,0	Braunkohle
LU (DE)*	0,0	0,0	0,0	0,0	0,0	0,0	1,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0 - 0,0		100		Band der Nachfrage (ungleichzeitig).
Summe**	9,3	9,8	27,8	2,0	0,9	1,7	11,0	8,3	0,3	81,5	17,0	91,3	6,0	5,1	0,6	34,2 - 93,2	4.0	2.0	9 1	-

^{*} Erzeugungsanlagen im Ausland mit Einspeisung in das deutsche Übertragungsnetz

^{**} Bei der Aufsummierung der Einzelwerte können sich Rundungsabweichungen ergeben.

^{***} Das Band der Nachfrage umfasst den klassischen Stromverbrauch sowie Wärmepumpen, Elektromobilität und VNB-Verluste ohne Einsatz von DSM, Power-to-Gas /-Heat.

Installierte Leistungen je Bundesland Szenario B 2035

							_									V/////////		usätzlic	he	
B 2035 (in GW)	Braun- kohle	Stein- kohle	Erdgas	Kuppel- gas	Öl	Abfall	Pump- speicher	KWK < 10 MW	sonstige Konven- tionelle	Wind onshore	Wind offshore	Photo- voltaik	Bio- masse	Lauf- und Speicher- wasser	sonstige EE	Band der Nachfrage		rbrauch		
w	0,0	2,3	2,1	0,0	0,0	0,1	2,1	1,3	0,0	4,6	0,0	13,0	0,5	1,0	0,0	4,1 – 13,1	0,6	0,0	1,1	
1	0,0	0,0	4,9	0,0	0,0	0,2	0,8	1,3	0,0	2,6	0,0	22,0	0,9	2,4	0,1	5,2 - 15,6	0,7	0,2	1,2	
E	0,0	0,0	1,4	0,0	0,0	0,0	0,0	0,3	0,0	0,0	0,0	0,8	0,0	0,0	0,0	0,8 - 2,6	0,1	0,0	0,8	
В	1,6	0,0	0,3	0,1	0,3	0,1	0,0	0,4	0,0	10,3	0,0	7,4	0,3	0,0	0,0	1,1 - 3,1	0,2	0,2	0,4	
	0,0	0,1	0,5	0,2	0,0	0,1	0,0	0,1	0,0	0,5	0,0	0,3	0,0	0,0	0,0	0,3 - 0,8	0,1	0,0	0,3	
	0,0	1,6	0,3	0,0	0,0	0,0	0,0	0,3	0,0	0,1	0,0	0,4	0,0	0,0	0,0	0,9 - 2,1	0,2	0,1	0,4	sonstige EE Lauf- und Speicherwasser
	0,0	0,0	1,8	0,0	0,0	0,1	0,6	0,7	0,0	4,4	0,0	5,1	0,2	0,1	0,0	2,4 - 6,7	0,3	0,0	0,6	Biomasse
	0,0	0,0	0,4	0,0	0,0	0,0	0,0	0,3	0,0	6,5	2,2	5,3	0,2	0,0	0,0	0,4 - 1,3	0,0	0,1	0,6	Photovoltaik
	0,0	0,9	2,6	0,3	0,0	0,1	0,2	1,0	0,0	17,6	17,0	8,7	0,9	0,1	0,0	3,4 - 9,5	0,6	0,5	1,3	Wind offshore Wind onshore
	3,2	3,3	9,1	1,3	0,1	0,5	0,3	1,8	0,2	11,0	0,0	13,1	0,5	0,2	0,4	8,6 - 22,2	1,4	0,9	2,8	sonstige Konventionelle
	0,0	0,0	1,8	0,0	0,0	0,1	0,0	0,4	0,0	6,9	0,0	5,1	0,1	0,2	0,0	2,0 - 4,8	0,3	0,2	0,4	KWK < 10 MW
	0,0	0,0	0,3	0,1	0,0	0,0	0,0	0,1	0,0	0,4	0,0	1,2	0,0	0,0	0,1	0,5 - 1,6	0,1	0,0	0,2	Pumpspeicher
	3,3	0,0	0,7	0,0	0,0	0,0	1,1	0,6	0,0	1,8	0,0	4,1	0,2	0,1	0,0	1,4 - 3,7	0,2	0,2	0,5	Abfall Ol
	1,0	0,0	0,9	0,0	0,1	0,2	0,1	0,5	0,0	6,8	0,0	4,6	0,3	0,0	0,0	0,9 - 2,5	0,2	0,4	0,5	Kuppelgas
	0,0	0,0	0,5	0,0	0,0	0,0	0,1	0,4	0,1	12,5	4,0	3,9	0,3	0,0	0,0	0,9 - 3,1	0,2	0,2	1,3	Erdgas
1	0,0	0,0	0,5	0,0	0,0	0,0	3,0	0,4	0,0	4,8	0,0	2,6	0,2	0,0	0,0	0,7 - 2,2	0,1	0,0	0,2	Steinkohle Braunkohle
T (DE)*	0,0	0,0	0,0	0,0	0,0	0,0	1,6	0,0	0,0	0,0	0,0	0,0	0,0	8,0	0,0	0,0 - 0,0	0,0	0,0	0,0	_
LU (DE)*	0,0	0,0	0,0	0,0	0,0	0,0	1,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0 - 0,0	0,0	0,0	0,0	Band der Nachfrage (ungleichzeitig)
Summe**	9,0	8,1	28,0	2,0	0,5	1,7	11,3	9,8	0,3	90,8	23,2	97,4	4,6	5,1	0,6	33,9 - 94,8	5,0	3,0	12,6	

^{*} Erzeugungsanlagen im Ausland mit Einspeisung in das deutsche Übertragungsnetz

^{**} Bei der Aufsummierung der Einzelwerte können sich Rundungsabweichungen ergeben.

^{***} Das Band der Nachfrage umfasst den klassischen Stromverbrauch sowie Wärmepumpen, Elektromobilität und VNB-Verluste ohne Einsatz von DSM, Power-to-Gas / -Heat.

Installierte Leistungen je Bundeland Szenario C 2030

NETZ ENTWICKLUNGS PLAN **STROM**

																			1000	
C 2030 (in GW)	Braun- kohle	Stein- kohle	Erdgas	Kuppel- gas	Öl	Abfall	Pump- speicher	KWK < 10 MW	sonstige Konven- tionelle	Wind onshore	Wind offshore	Photo- voltaik	Bio- masse	Lauf- und Speicher- wasser	sonstige EE	Band der Nachfrage		usätzlic erbrauc PtG		
вw	0,0	2,3	1,9	0,0	0,0	0,1	1,9	1,1	0,0	3,7	0,0	14,6	0,7	1,0	0,0	4,2 - 13,8	0,7	0,0	1,5	
Y	0,0	0,0	4,7	0,0	0,0	0,2	0,8	1,1	0,0	2,6	0,0	22,4	1,2	2,4	0,1	5,3 – 16,4	0,8	0,2	1,6	
BE	0,0	0,0	1,3	0,0	0,0	0,0	0,0	0,2	0,0	0,0	0,0	1,1	0,0	0,0	0,0	0,9 - 2,7	0,1	0,0	1,0	
В	1,6	0,0	0,2	0,1	0,3	0,1	0,0	0,4	0,0	10,1	0,0	6,5	0,4	0,0	0,0	1,1 - 3,3	0,2	0,2	0,5	
	0,0	0,1	0,5	0,2	0,0	0,1	0,0	0,1	0,0	0,5	0,0	0,4	0,0	0,0	0,0	0,3 - 0,9	0,1	0,0	0,3	*
	0,0	1,6	0,3	0,0	0,0	0,0	0,0	0,3	0,0	0,1	0,0	0,6	0,0	0,0	0,0	0,9 - 2,2	0,2	0,1	0,5	sonstige EE Lauf- und Speicherwasser
	0,0	0,0	1,7	0,0	0,0	0,1	0,6	0,6	0,0	3,9	0,0	6,0	0,2	0,1	0,0	2,5 - 7,1	0,4	0,0	0,8	Biomasse
	0,0	0,0	0,4	0,0	0,0	0,0	0,0	0,2	0,0	6,4	2,2	4,2	0,3	0,0	0,0	0,5 - 1,5	0,0	0,1	0,7	Photovoltaik
	0,0	0,9	2,4	0,3	0,0	0,1	0,2	0,8	0,0	17,3	10,8	10,2	1,1	0,1	0,0	3,5 - 10,1	0,7	0,5	1,6	Wind offshore Wind onshore
	3,2	3,3	8,4	1,3	0,1	0,5	0,3	1,5	0,2	9,8	0,0	16,0	0,7	0,2	0,4	8,9 - 23,3	1,7	0,9	3,9	sonstige Konventionelle
	0,0	0,0	1,7	0,0	0,0	0,1	0,0	0,4	0,0	6,1	0,0	5,6	0,1	0,2	0,0	2,0 - 5,1	0,4	0,2	0,5	KWK < 10 MW
	0,0	0,0	0,3	0,1	0,0	0,0	0,0	0,1	0,0	0,4	0,0	1,3	0,0	0,0	0,1	0,5 - 1,6	0,1	0,0	0,3	Pumpspeicher
	3,3	0,0	0,6	0,0	0,0	0,0	1,1	0,5	0,0	1,8	0,0	4,4	0,3	0,1	0,0	1,4 - 4,0	0,2	0,2	0,6	Abfall Öl
	1,0	0,0	0,8	0,0	0,1	0,2	0,1	0,4	0,0	6,7	0,0	4,4	0,4	0,0	0,0	1,0 - 2,7	0,2	0,4	0,6	Kuppelgas
	0,0	0,0	0,5	0,0	0,0	0,0	0,1	0,3	0,1	12,3	4,0	4,0	0,4	0,0	0,0	0,9 - 3,3	0,2	0,2	1,4	Erdgas
	0,0	0,0	0,5	0,0	0,0	0,0	3,0	0,3	0,0	3,7	0,0	2,8	0,2	0,0	0,0	0,7 - 2,4	0,1	0,0	0,3	Steinkohle
(DE)*	0,0	0,0	0,0	0,0	0,0	0,0	1,6	0,0	0,0	0,0	0,0	0,0	0,0	0,8	0,0	0,0 - 0,0	0,0	0,0	0,0	■ Braunkohle
U (DE)*	0,0	0,0	0,0	0,0	0,0	0,0	1,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0 - 0,0	0,0	0,0	0,0	Band der Nachfrage (ungleichzeitig)***
iumme**	9,0	8,1	26,0	2,0	0,5	1,7	11,0	8,3	0,3	85,5	17,0	104,5	6,0	5,1	0,6	35,1 - 100,2	_			

^{*} Erzeugungsanlagen im Ausland mit Einspeisung in das deutsche Übertragungsnetz



^{**} Bei der Aufsummierung der Einzelwerte können sich Rundungsabweichungen ergeben.

^{***} Das Band der Nachfrage umfasst den klassischen Stromverbrauch sowie Wärmepumpen, Elektromobilität und VNB-Verluste ohne Einsatz von DSM, Power-to-Gas /-Heat.

Ausstieg aus der Kohleverstromung

Ergebnisse der WSB-Kommission vs. Kapazitäten im NEP-Szenariorahmen

- Empfehlungen WSB-Kommission zu Kohlekapazitäten:
 - 17 GW Kohlekapazitäten in 2030
 (8 GW SK, 9 GW BK) und 0-<17 GW in 2035
- Kapazitäten im NEP-Szenariorahmen
 - A 2030: 22,9 GW (13,5 GW SK, 9,4 GW BK)
 - **B 2030: 19,1 GW** (9,8 GW SK, 9,3 GW BK)
 - **C 2030: 17,1 GW** (8,1 GW SK, 9,0 GW BK)
 - **B 2035: 17,1 GW** (8,1 GW SK, 9,0 GW BK)

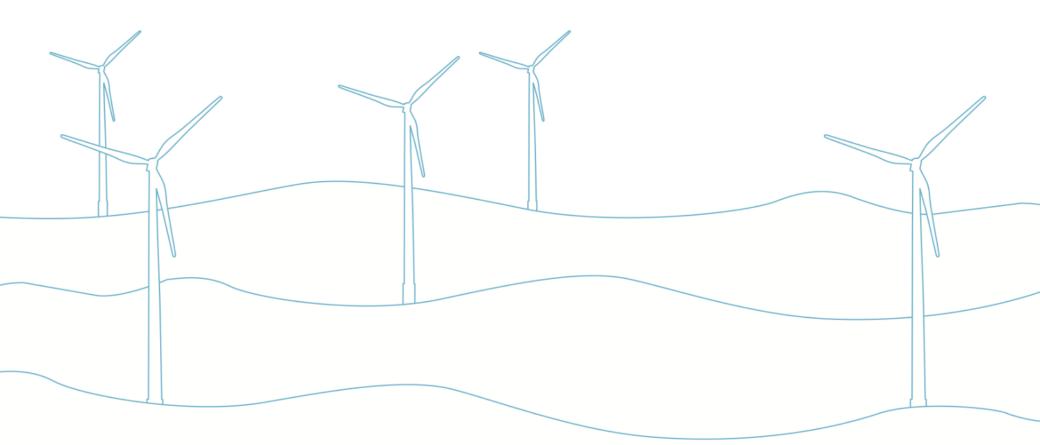
→ Fazit: Zahlen gerundet

- Kapazitäten in B 2030 in etwa kompatibel mit WSB-Kommission
- Kapazitäten in C 2030 nahezu identisch mit WSB-Kommission
- Kapazitäten in B 2035 spiegeln obere Grenze der Bandbreite der Kohlekapazität wieder
- Für zweiten NEP-Entwurf betrachtete Sensitivität "B 2035 Kohleausstieg" bestätigt Nachhaltigkeit der Netzmaßnahmen auch bei 0 GW Kohlekapazität.

Sensitivität "B 2035 – Kohleausstieg"

- Zum zweiten Entwurf des NEP 2030 (2019) betrachtete Sensitivität "B 2035 –
 Kohleausstieg" soll sicherstellen, dass die für 2030 sowie für 2035 identifizierten
 Netzmaßnahmen auch im Fall eines kompletten Kohleausstiegs erforderlich sind
- Die Sensitivität **basiert in weiten Teilen auf Szenario B 2035**. Analog zum Vorgehen im NEP wurde die wegfallende Leistung von KWK-fähigen Kohlekraftwerken durch erdgasbasierte innovative KWK-Systeme ersetzt (+ 1,1 GW).

Ergebnis der Marktsimulation:


- Nettostromexport sinkt gegenüber B 2035 von 35,9 auf 19 TWh: weniger Export nach Süd-/Westeuropa, mehr Import aus Nord-/Osteuropa
- + 24 TWh zusätzliche Stromerzeugung aus Erdgaskraftwerken
- Dumped Energy sinkt von 6,1 auf 4,4 TWh → bessere EE-Integration
- CO₂-Obergrenze wird ohne CO₂-Aufschlag eingehalten (96,1 statt 127 Mio. t)

Ergebnis der Netzanalysen:

- Überregionaler Netzausbaubedarf aus B 2035 auch ohne Kohlekraftwerke erforderlich
 → identifizierte Netzmaßnahmen sind robust
- Redispatch mit Netzmaßnahmen von B 2035 steigt von 2,6 auf 3,3 TWh an

Offshore-Netzausbaubedarf

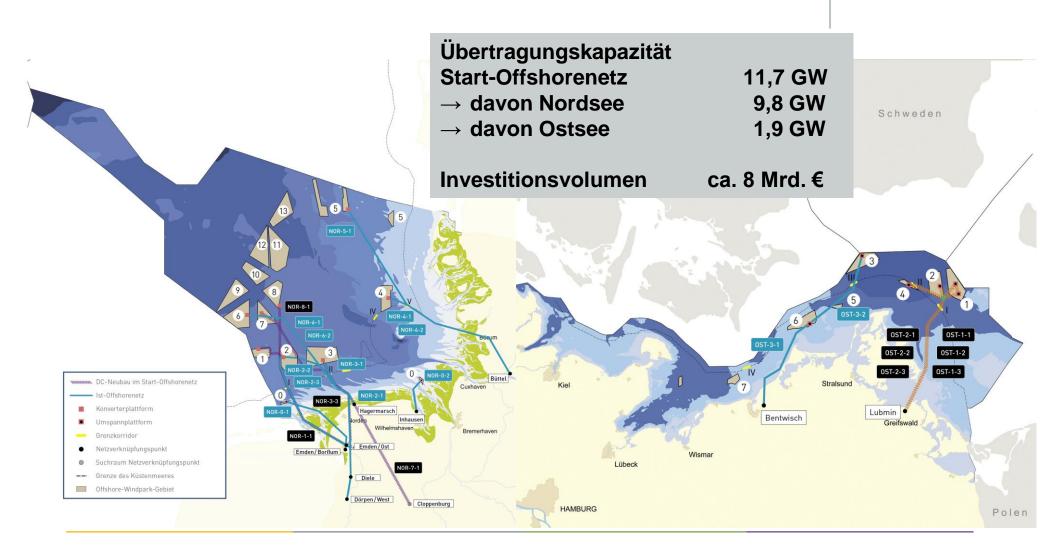
Ermittlung des Offshore-Netzausbaubedarfs

- Die bisher im O-NEP getroffenen Festlegungen werden nach Vorgabe des Gesetzgebers teilweise durch die im NEP und teilweise durch die im Flächenentwicklungsplan (FEP) des BSH getroffenen Festlegungen abgelöst.
- Damit bilden NEP und FEP zusammen mit den raumordnerischen Planungen der Küstenländer ein zusammenhängendes und aufeinander abgestimmtes Planwerk.
- Der Szenariorahmen sieht abweichend vom FEP-Entwurf sowie vom EEG einen Ausbau der Offshore-Windenergie in Höhe von 17 GW in den Szenarien B 2030 und C 2030, von 20 GW im Szenario A 2030 sowie von 23,2 GW im Szenario B 2035 vor. Der Zubau findet dabei fast ausschließlich in der Nordsee statt.

Gebiet	B 2030 / C 2030	A 2030	B 2035
Nordsee	14,8 GW	17,8 GW	21,0 GW
Ostsee	2,2 GW	2,2 GW	2,2 GW
Gesamt	17,0 GW	20,0 GW	23,2 GW

Übergang vom Offshore-Netzentwicklungsplan zum Flächenentwicklungsplan

Zeit	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026 bis mind. 2030	
Planerische Grundlagen	0-NEP 2025	0-NEP 2030 (2017)		Flächenentwicklungsplan (FEP)							
	Erstellung: ÜNB Bestätigung: BNetzA Grundlage für Aus- schreibungen im	Erstellung: ÜNB Bestätigung: BNetzA Ausgangspunkt für FEP	tätigung: BNetzA Aktualisier gangspunkt Grundlage			ng: BSH im Einvernehmen mit BNetzA und BfN, Stellungnahme durch ÜNB ierung mindestens alle 4 Jahre ge für Ausschreibungen im Zielmodell gemeinsam mit NEP ndere NVP, Erstellung alle 2 Jahre durch ÜNB, Bestätigung durch BNetzA)					
Ausschreibungen	Übergangsmodell	<u>**</u>		(IIISDESOIIG	≥ P	>_	2 Jame du	₹.	>_	<u>*</u>	
	1. April 2017/18: Ausschreibungen Übergangsmodell i. H. v. insgesamt 3.100 MW				Jährlich am 1. September: Ausschreibungen Zielmodell i. H. v. jährlich 700 –900 MW						
	Grundlage: 0-NEP 2025				Grundlage: FEP						
Ausbau						iebnahme is 2025	\	(-		Inbetriebnahme ab 2026	


Termin Ausschreibung Übergangsmodell für Inbetriebnahme 2021 bis 2025

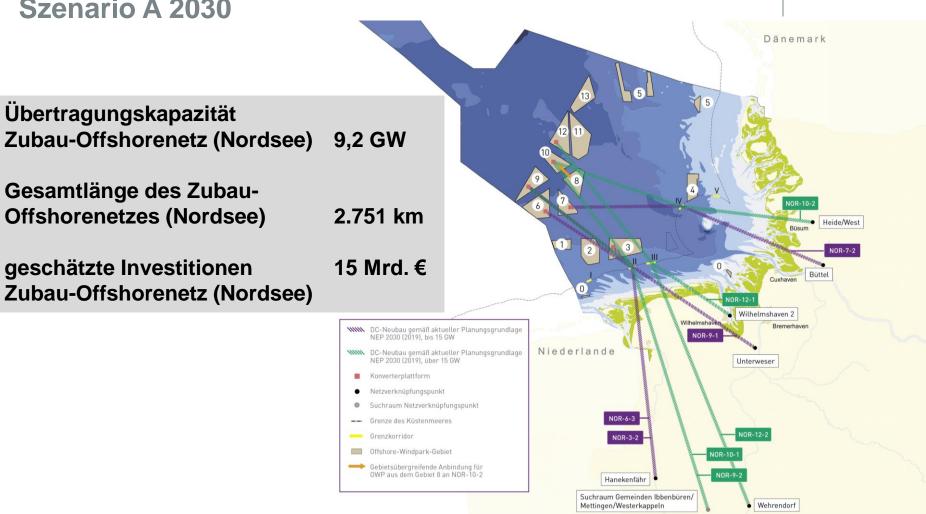
Termin Ausschreibung Zielmodell für Inbetriebnahme ab 2026

Start-Offshorenetz Nordsee und Ostsee

Das Zubau-Offshorenetz der Nordsee Szenario B 2030 und C 2030

Dänemark Übertragungskapazität **Zubau-Offshorenetz (Nordsee)** 5.8 **GW** Gesamtlänge des Zubau-Offshorenetzes (Nordsee) 1.756 km Heide/West 9 Mrd. € geschätzte Investitionen **Zubau-Offshorenetz (Nordsee)** DC-Neubau gemäß aktueller Planungsgrundlage NEP 2030 (2019), bis 15 GW NOR-9-1 Niederlande DC-Neubau gemäß aktueller Planungsgrundlage NEP 2030 [2019], über 15 GW Netzverknüpfungspunkt Suchraum Netzverknüpfungspunkt NOR-6-3 -- Grenze des Küstenmeeres NOR-3-2 Offshore-Windpark-Gebiet Gebietsübergreifende Anbindung für OWP aus dem Gebiet 8 an NOR-10-2 Hanekenfähr Suchraum Gemeinden Ibbenbüren/ Mettingen/Westerkappeln

Das Zubau-Offshorenetz der Nordsee Szenario B 2030 und C 2030

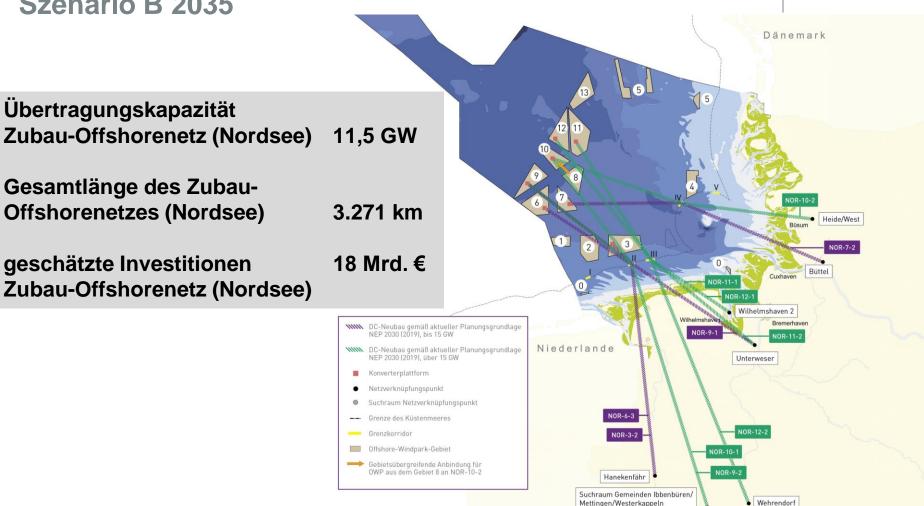


Projekt	Bezeichnung der Maßnahme	Netzverknüpfungs- punkt	Beginn der Umsetzung	Geplante Fertigstellung
NOR-3-2	HGÜ-Verbindung NOR-3-2 (DolWin4)	Hanekenfähr	2023	2028
NOR-6-3	HGÜ-Verbindung NOR-6-3 (BorWin4)	Hanekenfähr	2024	2029
NOR-7-2	HGÜ-Verbindung NOR-7-2 (BorWin6)	Büttel	2022	2027
NOR-9-1	HGÜ-Verbindung NOR-9-1 (BalWin1)	Unterweser	2024	2029
NOR-9-2	HGÜ-Verbindung NOR-9-2 (BalWin2)	Suchraum Gemeinden Ibbenbüren / Mettingen / Westerkappeln	nach 2025	nach 2030
NOR-10-2	HGÜ-Verbindung NOR-10-2 (BalWin3)	Heide / West	2025	2030

Das Zubau-Offshorenetz der Nordsee

Szenario A 2030

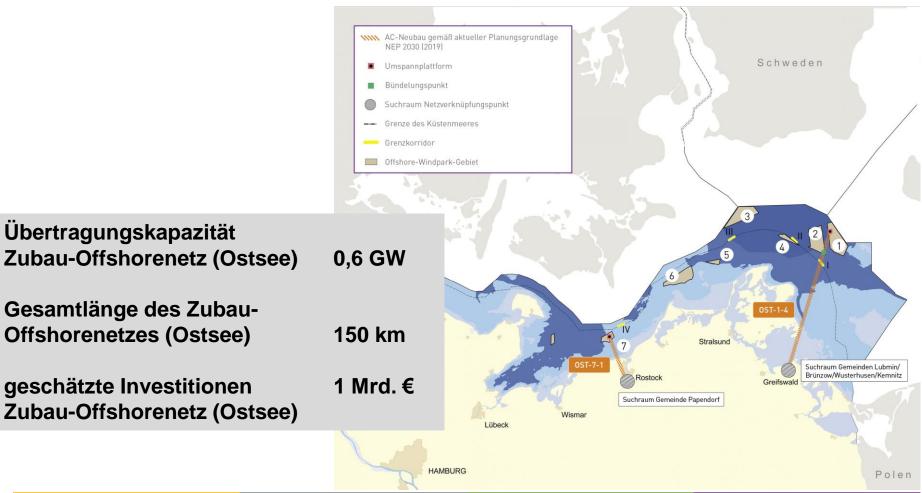
Das Zubau-Offshorenetz der Nordsee Szenario A 2030


Projekt	Bezeichnung der Maßnahme	Netzverknüpfungs- punkt	Beginn der Umsetzung	Geplante Fertigstellung
NOR-3-2	HGÜ-Verbindung NOR-3-2 (DolWin4)	Hanekenfähr	2023	2028
NOR-6-3	HGÜ-Verbindung NOR-6-3 (BorWin4)	Hanekenfähr	2024	2029
NOR-7-2	HGÜ-Verbindung NOR-7-2 (BorWin6)	Büttel	2022	2027
NOR-9-1	HGÜ-Verbindung NOR-9-1 (BalWin1)	Unterweser	2023	2028
NOR-9-2	HGÜ-Verbindung NOR-9-2 (BalWin2)	Suchraum Gemeinden Ibbenbüren / Mettingen / Westerkappeln	nach 2025	nach 2030
NOR-10-1	HGÜ-Verbindung NOR-10-1 (BalWin4)	Suchraum Gemeinden Ibbenbüren / Mettingen / Westerkappeln	nach 2025	nach 2030
NOR-10-2	HGÜ-Verbindung NOR-10-2 (BalWin3)	Heide / West	2024	2029
NOR-12-1	HGÜ-Verbindung NOR-12-1 (LanWin1)	Wilhelmshaven 2	2025	2030
NOR-12-2	HGÜ-Verbindung NOR-12-2 (LanWin2)	Wehrendorf	nach 2025	nach 2030

Das Zubau-Offshorenetz der Nordsee

Szenario B 2035

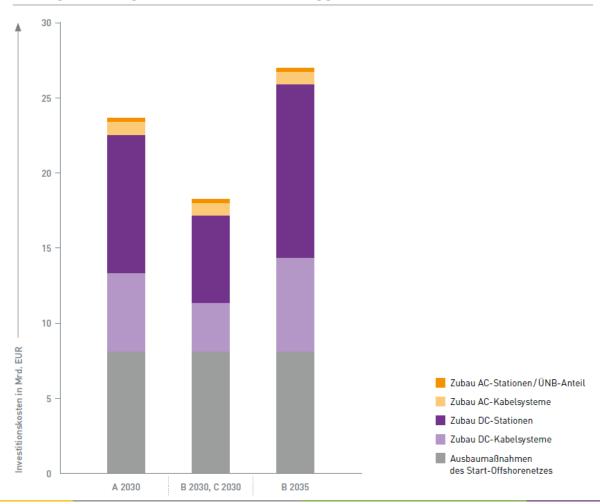
FNTWICKLUNGS AN STROM


Das Zubau-Offshorenetz der Nordsee Szenario B 2035

Projekt	Bezeichnung der Maßnahme	Netzverknüpfungs- punkt	Beginn der Umsetzung	Geplante Fertigstellung
NOR-3-2	HGÜ-Verbindung NOR-3-2 (DolWin4)	Hanekenfähr	2023	2028
NOR-6-3	HGÜ-Verbindung NOR-6-3 (BorWin4)	Hanekenfähr	2024	2029
NOR-7-2	HGÜ-Verbindung NOR-7-2 (BorWin6)	Büttel	2022	2027
NOR-9-1	HGÜ-Verbindung NOR-9-1 (BalWin1)	Unterweser	2024	2029
NOR-9-2	HGÜ-Verbindung NOR-9-2 (BalWin2)	Suchraum Gemeinden Ibbenbüren / Mettingen / Westerkappeln	nach 2025	nach 2030
NOR-10-1	HGÜ-Verbindung NOR-10-1 (BalWin4)	Suchraum Gemeinden Ibbenbüren / Mettingen / Westerkappeln	nach 2025	nach 2030
NOR-10-2	HGÜ-Verbindung NOR-10-2 (BalWin3)	Heide / West	2025	2030
NOR-11-1	HGÜ-Verbindung NOR-11-1 (LanWin3)	Wilhelmshaven 2	2029	2034
NOR-11-2	HGÜ-Verbindung NOR-11-2 (LanWin4)	Unterweser	2030	2035
NOR-12-1	HGÜ-Verbindung NOR-12-1 (LanWin1)	Wilhelmshaven 2	2027	2032
NOR-12-2	HGÜ-Verbindung NOR-12-2 (LanWin2)	Wehrendorf	nach 2025	nach 2030

Das Zubau-Offshorenetz der Ostsee Szenario A 2030, B 2030, C 2030 und B 2035

Das Zubau-Offshorenetz der Ostsee Szenario A 2030, B 2030, C 2030, B 2035



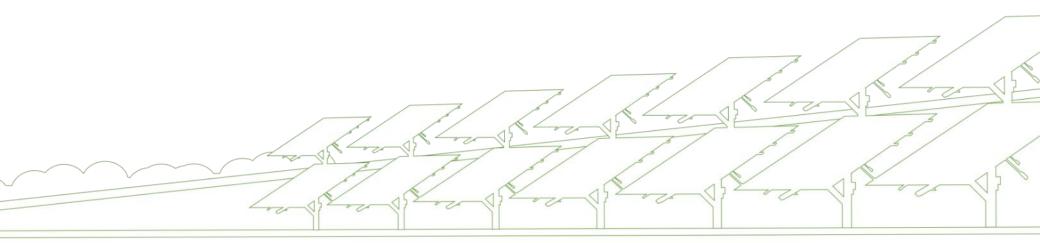
Projekt	Bezeichnung der Maßnahme	Netzverknüpfungs- punkt	Beginn der Umsetzung	Geplante Fertigstellung
OST-1-4	AC-Verbindung OST-1-4	Suchraum Gemeinden Lubmin / Brünzow / Wusterhusen / Kemnitz	2023	2026
OST-7-1	AC-Verbindung OST-7-1 (nördlich Warnemünde)	Suchraum Gemeinde Papendorf	2026	2029

NETZ ENTWICKLUNGS PLAN **STROM**

Geschätzte Investitionskosten Offshore

Abbildung 32: Schätzung des Investitionsvolumens in Abhängigkeit der Szenarien des NEP 2030 (2019)

Offshore-Sensitivität Ostsee



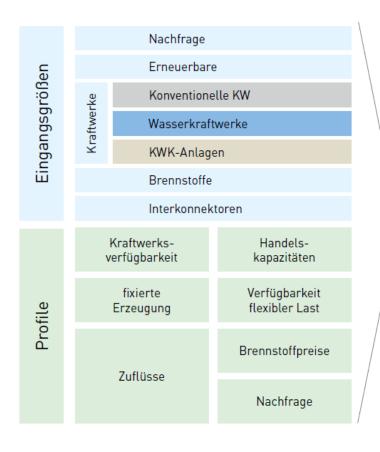
- 50Hertz hat in einer Sensitivität Berücksichtigung Küstenmeer Ostsee die Auswirkungen einer Steigerung der Einspeisung aus Offshore-Windenergie um rund 1 GW aus leicht erschließbaren Flächen im Küstenmeer der Ostsee untersucht.
- Die Ergebnisse zeigen, dass eine Steigerung der Einspeisung aus Offshore-Windenergie in der Ostsee gegenüber der Annahme im Szenariorahmen ohne weitere neue Onshore-Netzprojekte durch die bereits geplante Netzinfrastruktur aufgenommen werden kann.
- Dadurch ergibt sich eine zusätzliche Flexibilität beim politischen Ausbauziel für die Offshore-Windenergie in 2030 in einer Bandbreite von 17 bis 20 GW.

12.02.2019

Ergebnisse der Marktsimulationen

Ergebnisse der Marktsimulation (I)

- Die Marktsimulationen zum NEP 2030 (2019) verdeutlichen die weiter fortschreitende
 Transformation des Energiesektors in Bezug auf die Integration erneuerbarer Energien
- Wind (on- und offshore) ist der Energieträger mit dem größten Anteil am Energiemix in allen Szenarien. Mit 55 % in 2025 bis 70 % in 2035 weist Deutschland in allen Szenarien im europäischen Vergleich einen hohen EE-Anteil an der Stromerzeugung auf.
- Das im Koalitionsvertrag formulierte Ziel eines EE-Anteils von 65 % am
 Bruttostromverbrauch wird in allen Szenarien für 2030 erreicht und mit
 rund 67 68 % sogar leicht übertroffen. Im Szenario B 2035 steigt der EE-Anteil am
 Bruttostromverbrauch auf 73,7 % an.
- Die steigende Flexibilisierung von KWK-Anlagen und Anwendungen auf der Nachfrageseite f\u00f6rdern die Integration der fluktuierenden Stromerzeugung aus erneuerbaren Energien. Dennoch kommt es vermehrt zur marktseitigen Einsenkung von EE-Stromerzeugung, welche nicht mehr integriert werden kann.
- In den **Szenarien mit dem Zieljahr 2030** steigt die sog. **Dumped Energy** (= Erzeugung ohne korrespondierenden Verbrauch) gegenüber dem NEP 2030 (2017) signifikant an, ist im Verhältnis zur gesamten EE-Erzeugung mit 2 4,5 TWh aber immer noch gering.


Ergebnisse der Marktsimulation (II)

- Die Volllaststunden der thermischen Erzeugungstechnologien unterscheiden sich in den einzelnen Szenarien bei allen Energieträgern deutlich. Gründe für die Unterschiede sind u. a. die vollständige Flexibilisierung der thermischen Erzeugungsanlagen im Szenario C 2030 sowie die Aufschläge auf die CO₂-Preise in A 2030 und B 2035. Die Volllaststunden der Braunkohlekraftwerke liegen in allen Szenarien deutlich unter denen im NEP 2030 (2017).
- Eine zusätzliche Erhöhung des CO₂-Preises in Deutschland zur Erreichung der im Szenariorahmen festgelegten Emissionsobergrenzen ist nur in den Szenarien A 2030 (+10 €/t CO₂) und B 2035 (+28 €/t CO₂) notwendig. In den übrigen Szenarien wird die Emissionsobergrenze in der Marktsimulation ohne weitere Aufschläge auf den europaweiten CO₂-Preis eingehalten.
- In allen Szenarien ist ein starkes innerdeutsches Erzeugungsgefälle zu beobachten.
 Während in Nord- und Ostdeutschland die überwiegend erneuerbare Erzeugung die lokale
 Nachfrage um mehr als das Doppelte übertrifft, herrscht in Süd- und Westdeutschland ein
 Erzeugungsdefizit. Zwischen etwa einem Viertel und der Hälfte der jährlichen
 Stromnachfrage müssen in diesen Bundesländern aus in- und ausländischen Importen
 gedeckt werden.

Überblick über das Elektrizitätsmarktmodell

4

Elektrizitätsmarktmodell

- 8.760 Stunden pro Jahr
- Kraftwerksdynamiken
- Marktgebietsbetrachtung
- Modellierung von Wasserkraft
- Regelleistungsmodellierung
- CO₂-Restriktion

Ergebnisse

Großhandelspreise Strom

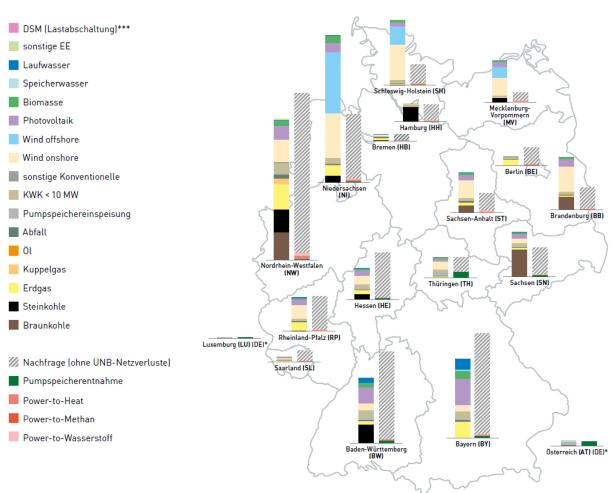
(stundenscharf für jedes Marktgebiet)

Einspeisung

(stundenscharf für jedes Kraftwerk)

Handelsflüsse

(stundenscharf zwischen Marktgebieten)


Nutzung flexibler Last

(stundenscharf)

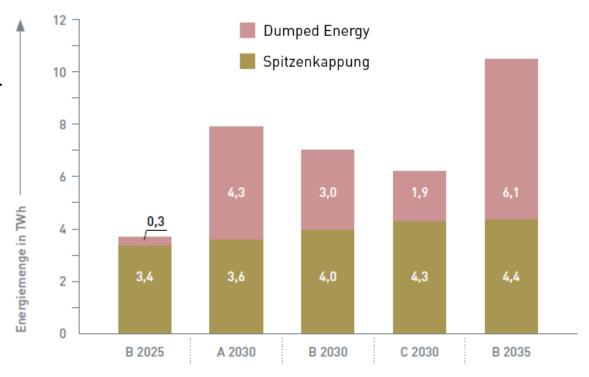
Quelle: Pöyry Management Consulting/Übertragungsnetzbetreiber

Bundesländerbilanz B 2030: Nord-Süd-Gefälle

Erzeugungsüberschuss in Norddeutschland:

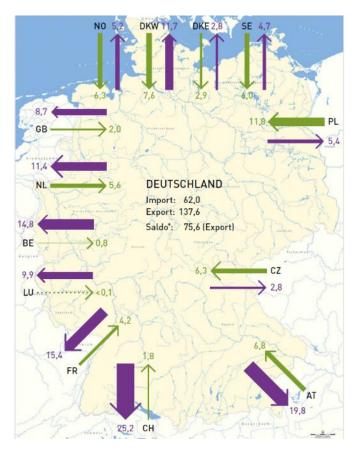
Die Erzeugung in nord- und ostdeutschen Bundesländern übersteigt die lokale Nachfrage um mehr als das Doppelte.

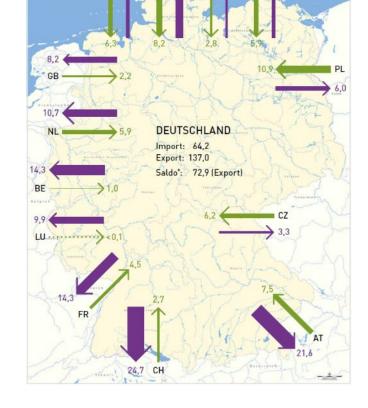
Erzeugungsdefizit in Süddeutschland:


Zwischen etwa einem Viertel und der Hälfte der jährlichen Stromnachfrage müssen in diesen Bundesländern aus inund ausländischen Importen gedeckt werden.

Die Tendenz ist in allen Szenarien gleich, nur die Werte variieren leicht.

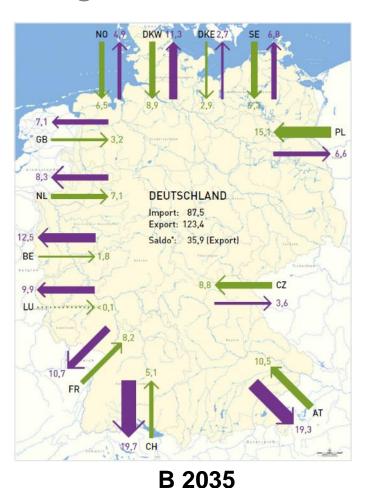
Spitzenkappung und Dumped Energy

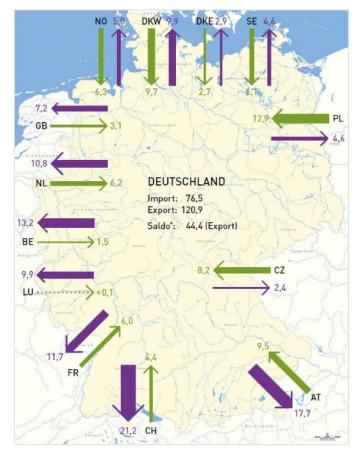



- Erstmals signifikante Mengen sog. Dumped Energy (EE-Erzeugungsüberschuss ohne Nachfrage)
- Mengen sind im Vergleich zur EE-Erzeugung immer noch sehr gering
- Summe aus Spitzenkappung und Dumped Energy 1,5-2,2 % der EE-Erzeugung in 2030 und 2,4 % in 2035
- → theoretisches Potenzial für lokale Verwendung (PtX)

NETZ ENTWICKLUNGS PLAN **STROM**

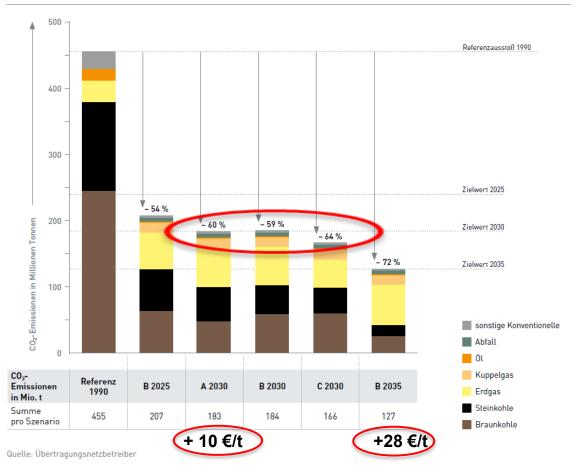
Handelsaustausch: Deutlicher Nettostromexport in A 2030 und B 2030

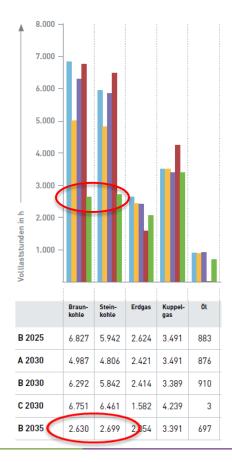

DKW 11,3 DKE 2,8


A 2030

B 2030

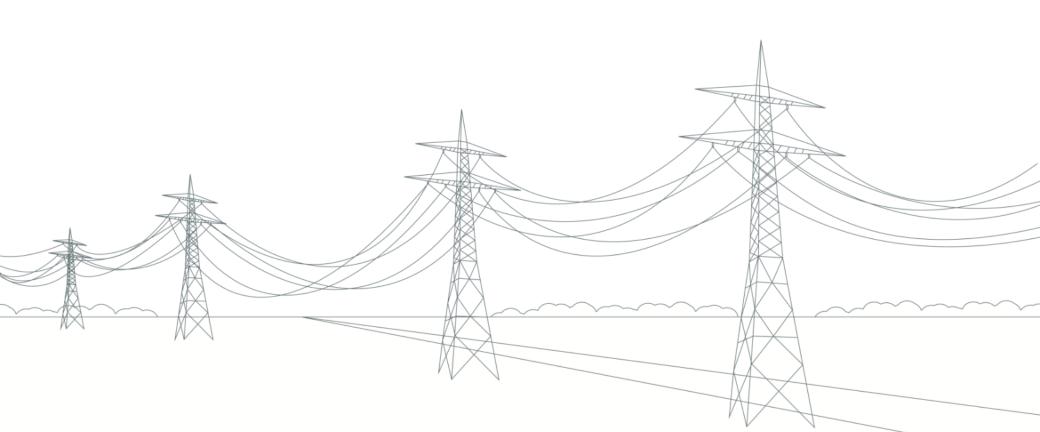
Handelsaustausch: Nettoexport in C 2030 deutlich größer als in B 2035




C 2030

Kraftwerkseinsatz und CO₂-Emissionen: Preisaufschlag nur in A 2030 und B 2035

Abbildung 47: CO₂-Emissionen in der Stromerzeugung in Deutschland in den Szenarien des NEP 2030 (2019)



Ergebnisse der Netzanalysen

Zentrale Ergebnisse der Netzanalysen (I)

- Durch die neue Startnetz-Definition (Aufnahme in das Startnetz bereits mit Beginn statt Abschluss des Planfeststellungsverfahrens) vergrößert sich der Umfang des Startnetzes gegenüber dem NEP 2030 (2017) um rund ein Drittel.
- Neben den von der BNetzA im Zuge des NEP 2030 (2017) bestätigten Ad-hoc-Maßnahmen konnten anhand des Szenarios B 2025 weitere Maßnahmen mit Redispatch senkender Wirkung identifiziert werden. Darüber hinaus wurde die Wirkung von Netzbooster-Pilotanlagen analysiert.
- In die Zielnetze für 2030 und 2035 wurden darüber hinaus weitere Phasenschiebertransformatoren eingebaut, die den Leistungsfluss im AC-Netz optimieren und so den zusätzlichen Netzverstärkungs- und -ausbaubedarf reduzieren.

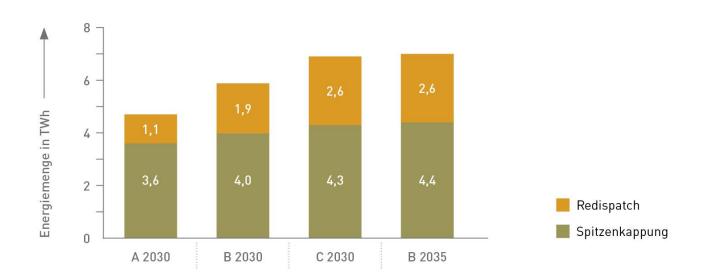
Zentrale Ergebnisse der Netzanalysen (II)

- Erstmals haben die Übertragungsnetzbetreiber die möglichen Potenziale zukünftiger innovativer Technologien (u. a. moderne Systemführungskonzepte, Netzbooster) im Netzentwicklungsplan implizit berücksichtigt. Dafür wurden in 2030 und in 2035 identifizierte Engpässe nicht vollständig durch entsprechende Maßnahmen beseitigt.
- Es verbleibt mit dem vorgeschlagenen Netz zusätzlich zu rund 4 TWh Spitzenkappung ein Redispatch-Volumen von 1,1 TWh in A 2030, 1,9 TWh in B 2030 und 2,6 TWh in C 2030 und B 2035.
- Vor dem Hintergrund eines EE-Anteils am Bruttostromverbrauch in den Szenarien für 2030 von über 65 % führen die ÜNB das Konzept des optimierten Ausbaus von Verstärkungen im AC-Netz einschließlich leistungsflusssteuernder Elemente in Kombination mit dem Zubau neuer DC-Verbindungen zur Deckung des Nord-Süd-Stromtransportbedarfs fort.

Zentrale Ergebnisse der Netzanalysen (III)

- Durch den angenommenen Einsatz innovativer Elemente in Markt und Netz gelingt es, im NEP 2030 (2019) den gesamten Netzverstärkungs- und -ausbaubedarf gegenüber dem NEP 2030 (2017) trotz der durch den höheren Zuwachs an erneuerbaren Energien deutlich steigenden Übertragungsaufgabe in etwa konstant zu halten.
- Die gesamte Trassenlänge der ermittelten Maßnahmen im Szenario B 2030 (2019) liegt einschließlich zusätzlich erforderlicher leistungsfähiger DC-Verbindungen leicht unterhalb der im Szenario B 2030 (2017) ermittelten Trassenlänge, bei dem der Fokus ausschließlich auf der Verstärkung und dem Ausbau des AC-Netzes lag.
- Sämtliche Vorhaben des Bundesbedarfsplans sowie die von der BNetzA im Zuge des NEP 2030 (2017) darüber hinaus bestätigten Maßnahmen sind sowohl in den Szenarien mit dem Zieljahr 2030 als auch im Langfristszenario B 2035 erforderlich.
- Die Erforderlichkeit dieser Maßnahmen, die für ein bedarfsgerechtes Netz angesichts der steigenden Transportaufgabe alleine noch nicht ausreichend sind, wird damit im Netzentwicklungsplan 2030 (2019) erneut bestätigt.

Zentrale Ergebnisse der Netzanalysen (kurz)



- Sämtliche Vorhaben des Bundesbedarfsplans sowie die von der BNetzA im NEP 2030 (2017) darüber hinaus bestätigten Maßnahmen sind sowohl in den Szenarien mit dem Zieljahr 2030 als auch in B 2035 erforderlich. Dies reicht allerdings noch nicht aus, um ein bedarfsgerechtes Netz zu bilden.
- Erstmals haben die ÜNB die möglichen Potenziale zukünftiger innovativer
 Technologien (u. a. moderne Systemführungskonzepte, Netzbooster) im NEP
 implizit berücksichtigt. Dafür wurden in 2030 und in 2035 identifizierte Engpässe
 nicht vollständig durch entsprechende Maßnahmen beseitigt.
- Es verbleibt mit dem vorgeschlagenen Netz zusätzlich zu rund 4 TWh Spitzenkappung ein Redispatch-Volumen von 1,1 TWh in A 2030, 1,9 TWh in B 2030 und 2,6 TWh in C 2030 und B 2035.
- Durch den angenommenen Einsatz innovativer Elemente in Markt und Netz gelingt es, im NEP 2030 (2019) den gesamten Netzverstärkungs- und -ausbaubedarf gegenüber dem NEP 2030 (2017) trotz der durch den EE-Zuwachs deutlich steigenden Übertragungsaufgabe in etwa konstant zu halten.

Raum für Innovationen

Spitzenkappung und verbleibender Redispatch mit den Zielnetzen 2030 und 2035

Quelle: Übertragungsnetzbetreiber

ÜNB setzen auf Innovationsmix zur Minimierung des zusätzlich erforderlichen Netzausbaubedarfs

Startnetz NEP 2030 (2019)

Anpassung der Startnetz-Definition:

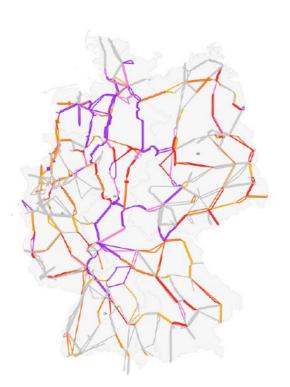
- Bisher: Istnetz, EnLAG-Maßnahmen und planfestgestellten bzw. im Bau befindliche Maßnahmen
- Neu: Auch Maßnahmen, bei denen Planfeststellungsverfahren begonnen hat

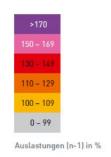
Gesamtumfang: 2.630 km – ca. 700 km mehr als im NEP 2030 (2017), darunter:

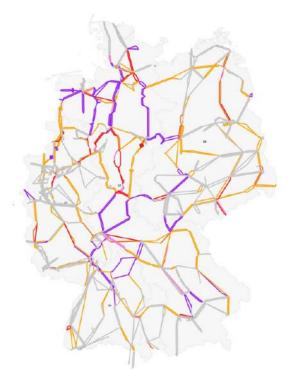
AC-Zu-/Umbeseilung: 130 km

AC-Netzverstärkung: 1.650 km

AC-Neubau: 600 km


DC-Neubau: 250 km


Investitions volumen: rund 12,5 Mrd. €

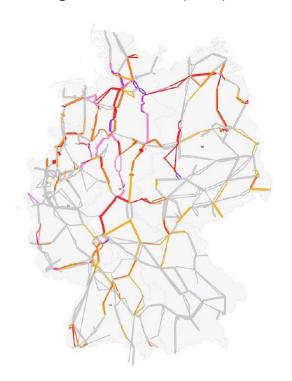

NETZ ENTWICKLUNGS PLAN **STROM**

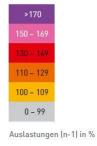
Überlastungen im Startnetz mit Interkonnektoren

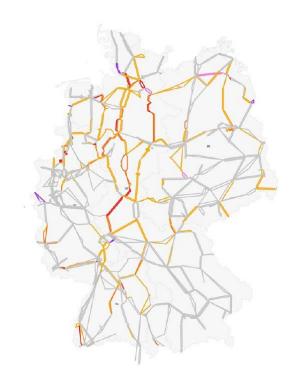
Maximale Auslastung je Stromkreis bei Ausfall eines Netzelements, so genannter "(n-1)-Fall"

/_

Häufigkeit der Überlastungen:

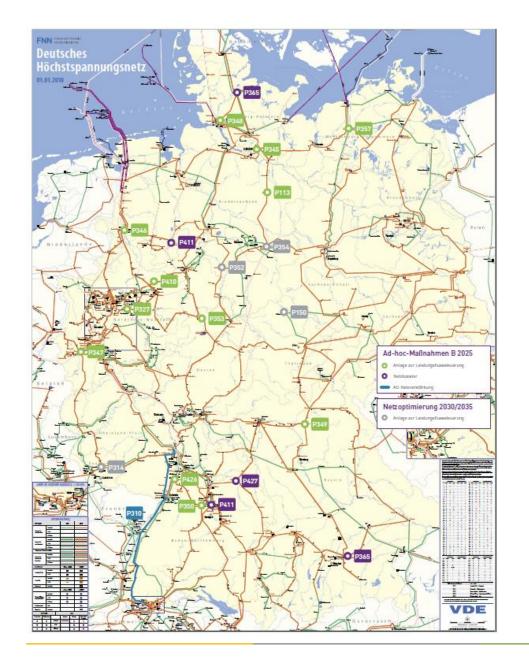

z.T. über 1.000 Stunden


Maximale Leitungsauslastung z.T. über 300%


NETZ ENTWICKLUNGS PLAN **STROM**

Überlastungen im BBP-Netz mit Interkonnektoren

Maximale Auslastung je Stromkreis bei Ausfall eines Netzelements, so genannter "(n-1)-Fall"



Quelle: Übertragungsnetzbetreiber

Maximale Leitungsauslastung z.T. über 200%

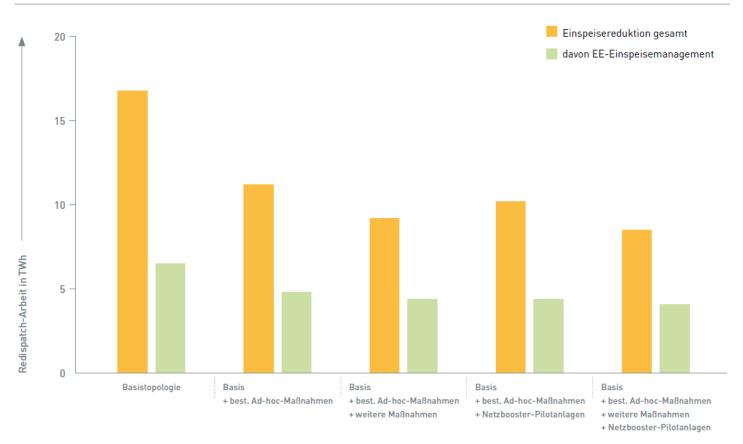
Quelle: Übertragungsnetzbetreibe

Häufigkeit der Überlastungen: z.T. über 1.000 Stunden

Szenario B 2025

Nachweis von Anlagen zur Netz-Optimierung zur Vermeidung von Redispatch:

- bestätigte Ad hoc-Maßnahmen aus NEP 2030 (2017) – 9 Maßnahmen, darunter 1 Leitung (P310)
- weitere Querregler/PST aus NEP 2030 (2019) – 4 Maßnahmen (eine pro Netzgebiet)
- Netzbooster-Pilotanlagen (violett)


In der Karte außerdem enthalten:

 weitere Anlagen zur Leistungsflusssteuerung aus in 2030 und 2035 (grau)

ENTWICKLUNG: PLAN **STROM**

Szenario B 2025: Ad hoc-Maßnahmen senken Redispatch-Volumen erheblich

Abbildung 58: Redispatch-Bewertung der untersuchten Netztopologien im Szenario B 2025

Szenario A 2030 inkl. Startnetz

DC-Verbindungen	
Neubau in Deutschland	3.780 km

Übertragungskapazität: 12 GW

nach BEL, DNK, NOR,
 GBR und SWE (dt. Anteil)
 520 km

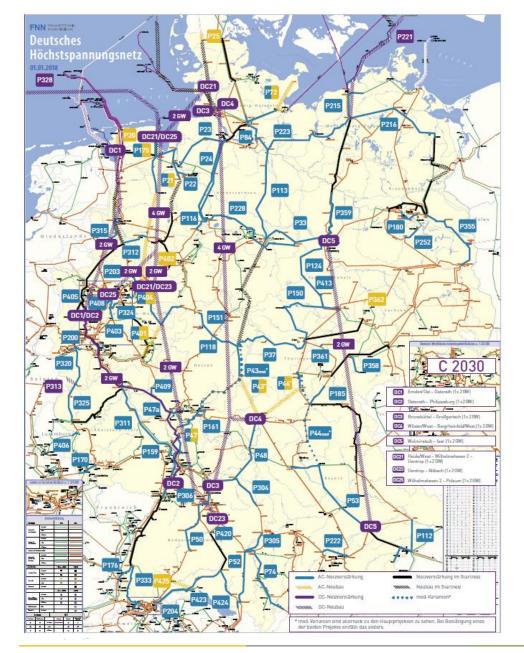
AC-Netz Neubau 1.030 km

DC/AC-Netz Verstärkung 6.670 km

davon Zu-/Umbeseilung 2.280 km

Investitionsvolumen:
bei Vollverkabelung der DCVerbindungen (außer DC2)

61 Mrd. €



Szenario B 2030 inkl. Startnetz

DC-Verbindungen				
Neubau in Deutschland	3.780 km			
 Übertragungskapazität: 	12 GW			
 nach BEL, DNK, NOR, GBR und SWE (dt. Anteil) 	520 km			
AC-Netz Neubau	1.030 km			
AC-Netz Neubau DC/AC-Netz Verstärkung	1.030 km 6.710 km			

Investitionsvolumen: bei Vollverkabelung der DC-Verbindungen (außer DC2) 61 Mrd. €

Szenario C 2030 inkl. Startnetz

DC-Verbindungen
Neubau in Deutschland

3.780 km

Übertragungskapazität:

12 GW

nach BEL, DNK, NOR, GBR und SWE (dt. Anteil)

520 km

AC-Netz Neubau

1.130 km

DC/AC-Netz Verstärkung

7.180 km

davon Zu-/Umbeseilung

2.420 km

Investitions volumen:

62,5 Mrd. €

bei Vollverkabelung der DC-Verbindungen (außer DC2)

Szenario B 2035 inkl. Startnetz

DC-Verbindungen	
Neubau in Deutschland	4.080 km

Übertragungskapazität: 12 GW

nach BEL, DNK, NOR,
 GBR und SWE (dt. Anteil)
 520 km

AC-Netz Neubau 1.140 km

DC/AC-Netz Verstärkung 7.490 km

davon Zu-/Umbeseilung 2.110 km

Investitionsvolumen:
bei Vollverkabelung der DCVerbindungen (außer DC2)

68 Mrd. €

Netzverstärkungs- und –ausbaubedarf in 2030: ca. 4.350-4.950 km über den BBP hinaus

Angaben in km	AC-Verstärkung		DC-Verstärkung		AC-Neubau	DC-Neubau	Summe	Maßnahmen über BBP
	Zu-/ Umbeseilung	Neubau in Bestandstrasse	Zu-/ Umbeseilung	Neubau in Bestandstrasse				hinaus (ca.)
Startnetz	130	1.650	0	0	600	250	2.630	
Zubaunetz								
A 2030	1.850	2.700	300	40	430	3.530	8.740	
B 2030	1.760	2.830	300	40	430	3.530	8.890	
C 2030	1.990	3.070	300	40	530	3.530	9.460	
B 2035	1.750	3.030	300	580	550	3.830	10.040	
Start- und Zubaur	netz							
A 2030	1.980	4.350	300	40	1.030	3.780	11.480	4.350 km
B 2030	1.890	4.480	300	40	1.030	3.780	11.520	4.400 km
C 2030	2.120	4.720	300	40	1.130	3.780	12.090	4.950 km
B 2035	1.880	4.680	300	580	1.150	4.080	12.670	
C 2030			300	40	1.130	3.780	12.090	_

Investitionskosten bei Vollverkabelung der DC-Verbindungen, inkl. DC-Interkonnektoren

Angaben in Mrd. EUR (gerundet)	A 2030	B 2030	C 2030	B 2035
DC-Zubaunetz	28,5	28,5	28,5	33,5
DC-Startnetz	1,5	1,5	1,5	1,5
AC-Zubaunetz*	20,0	20,0	21,5	22,0
AC-Startnetz	11,0	11,0	11,0	11,0
Summe	61,0	61,0	62,5	68,0

^{*}inkl. Anlagen zur Blindleistungskompensation

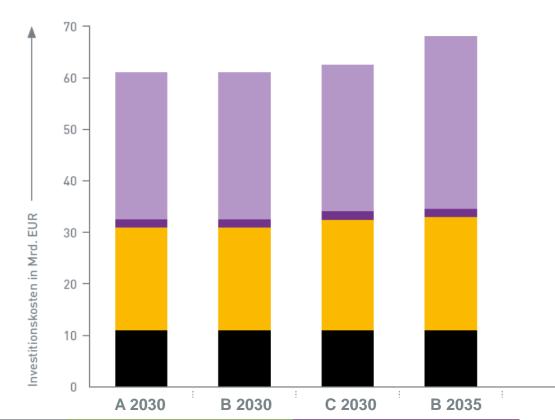
Investitionskosten onshore: Anstieg zum NEP 2030 (2017)

ENTWICKLUNGS

DC-Zubaunetz

DC-Startnetz

AC-Zubaunetz


AC-Startnetz

Drei wesentliche Gründe:

- 1. Anpassung Standardkosten
 - Aktualisierung Kostenbasis
 - Berücksichtigung Erfahrungen
 - Berücksichtigung Planungs- und Genehmigungsverfahren
- 2. Neue Konfiguration
 - Mehr DC-Erdkabel statt
 AC-Freileitung (→ Akzeptanz)
 - Ad-hoc-Maßnahmen
- Berücksichtigung der Anlagen zur Blindleistungskompensation

Einordnung der Kosten wichtig:

- Investitionen fallen über die Jahre verteilt an
- Projekte werden über bis zu 40 Jahre abgeschrieben

Geschätzte Investitionskosten im NEP 2030 (2019)

Berücksichtigung von Erdkabeln (DC)

- Anfang 2016 wurde vom Gesetzgeber ein Erdkabelvorrang für vier von fünf im Bundesbedarfsplan enthaltenen DC-Verbindungen gesetzlich festgeschrieben. Dementsprechend werden die Kosten im NEP unter der Annahme einer Vollverkabelung dieser DC-Verbindungen (DC1 sowie DC3-DC5) sowie der neu identifizierten DC-Verbindungen (DC20, DC21, DC23, DC25) ausgewiesen.
- Grundsätzlich ist darauf hinzuweisen, dass die Mehrkosten einer Ausführung als Erdkabel im Vergleich zur Freileitung sowohl bei DC-Verbindungen als auch bei den AC-Pilotprojekten sehr stark von den örtlichen Gegebenheiten (z. B. Bodenbeschaffenheit) abhängen.
- Für die DC-Erdkabel-Kostenschätzung im NEP 2030 (2019) wurden Schätzkosten in Höhe von 6 Mio. € / km für eine HGÜ-Verbindung mit 1 x 2 GW und von 12 Mio. € / km für eine HGÜ-Verbindung mit 2 x 2 GW unterstellt.
- Diese Kostenansätze basieren auf Erfahrungen der ÜNB mit ersten Drehstrom-Teilerdverkabelungsprojekten sowie mit HGÜ-Erdkabeln (z. B. landseitige Offshore-Anschlüsse und Seekabel).

Berücksichtigung von Erdkabeln (AC)

- Für AC-Verbindungen wurde im NEP in der Regel eine Realisierung als Freileitung angenommen. Lediglich bei den Projekten, die als Pilotprojekt zur Teil-Erdverkabelung gemäß § 2 Energieleitungsausbaugesetz (EnLAG) sowie § 4 BBPIG definiert sind, ist eine anteilige Erdverkabelung bei der Kostenkalkulation der Projekte berücksichtigt worden. Nähere Details finden sich bei fortgeschrittenen Projekten im jeweiligen Steckbrief im Anhang zum NEP.
- Grundsätzlich ist darauf hinzuweisen, dass die **Mehrkosten einer Ausführung** als Erdkabel im Vergleich zur Freileitung sowohl bei DC-Verbindungen als auch bei den AC-Pilotprojekten sehr stark von den örtlichen Gegebenheiten (z. B. Bodenbeschaffenheit) abhängen.
- Für die Teil-Erdverkabelungsabschnitte bei AC-Projekten werden durchschnittliche Schätzkosten in Höhe von 11,5 Mio. € / km 380-kV-Höchstspannungserdkabel angenommen. Die Kosten für die erforderlichen Kabelübergangsanlagen sind darin bereits berücksichtigt. Im Gegenzug wird eine höhere Akzeptanz der Vorhaben unterstellt.

Kosten-Nutzen-Analyse von Interkonnektoren

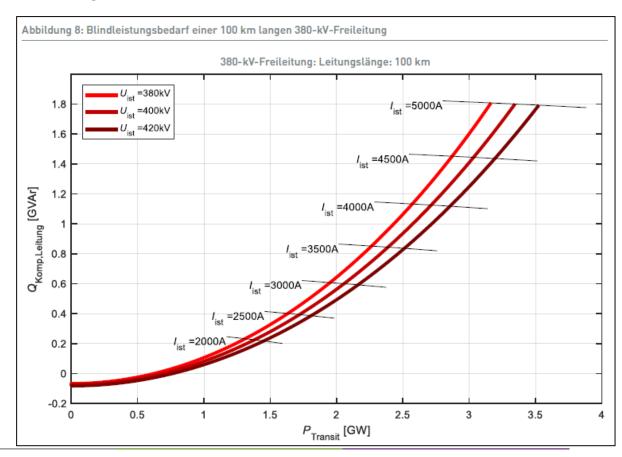
- Die ÜNB haben gemäß den Anforderungen der BNetzA anhand des Szenarios
 B 2035 Kosten-Nutzen-Analysen (Cost-Benefit-Analysis, CBA) für insgesamt acht über den BBP hinausgehende Interkonnektoren durchgeführt.
- Das Vorgehen, das weitgehend der CBA im TYNDP 2018 entspricht, sowie die analysierten Interkonnektoren werden in Kapitel 5.4 des NEP-Berichts dargestellt.
- Die Ergebnisse der CBA sind in den Steckbriefen der Projekte im Anhang zum NEP abgebildet.
 Tabelle 24: Übersicht über die ausgewerteten Indikatoren im Rahmen der Kosten-Nutzen-Analyse

Indikator (gemäß ENTSO-E Bezeichnung)	Berechnungsmethode bzw. Ursprung	Einheit
B1. Socio-economic welfare	Marksimulation und Redispatch	€/Jahr
B2. Variation in CO ₂ emissions	Marksimulation und Redispatch	Tonnen/Jahr
B3. RES integration	Marksimulation und Redispatch	MW bzw. MWh/Jahr
B4. Societal well-being as result of RES integration and change in CO₂ emissions	Marksimulation und Redispatch	€/Jahr
B5. Variation in grid losses	Lastflussberechnung	MWh/Jahr
C1. Capital Expenditure (CAPEX)	ÜNB Info	€
C2. Operational Expenditure (OPEX)	ÜNB Info	€/Jahr

Bewertung der Systemstabilität

- Die ÜNB haben anhand des Szenarios B 2035 Stabilitätsanalysen durchgeführt
- betrachtet wurden Frequenzstabilität, Winkelstabilität (transiente Stabilität) und Spannungsstabilität
- → Kurzfassung in Kapitel 5.5 des NEP-Berichts, Langfassung in einem eigenen Begleitdokument
- → Ergebnis: Erheblicher Bedarf an Anlagen zur Kompensation der Blindleistung zur Deckung der stationären und regelbaren Bedarfe mit einer installierten Leistung von mindestens 38,1 – 74,3 Gvar (127-248 Anlagen à 300 MVA)

Zubaubedarf [Gvar]	TenneT	Transnet BW	Amprion	50Hertz	Deutschland
Stationär spannungshebend	3,0 - 10,4	1,5 - 2,3	1,6 - 8,9	5,1 - 9,4	11,2 - 31,1
Stationär spannungssenkend	0,0 - 2,6	0,3 - 1,4	1,2 - 5,2	2,2 - 6,5	4,3 - 14,8
Regelbar	6,2 - 7,7	1,1 - 1,8	4,2 - 5,8	11,1 - 13,1	22,6 - 28,4
Summe	9,2 - 20,7	2,9 - 5,5	7,0 – 19,9	18,4 - 29,1	38,1 - 74,3



Bewertung der Systemstabilität

Warum steigt der Bedarf an Blindleistungskompensation so stark an?

- u.a. durch Wegfall konventioneller Kraftwerke (und deren Beitrag)
- Höherauslastung des Bestandsnetzes erhöht Kompensationsbedarf im AC-Netz überproportional
 - → Begleiteffekt von NOVA + Innovationen

Fazit (I)

Genehmigter Szenariorahmen der BNetzA

 Herausfordernde Rahmenbedingungen (u.a. 65% EE, CEP, Berücksichtigung Klimaschutzplan, flexibilisierte Nachfragseite) → Chance Innovationen in Markt und Netzmodellierung zu implementieren

Ambitionierter Ansatz der ÜNB

Einsatz von netzausbaureduzierenden Instrumenten

bereits in der
Marktanalyse
(u.a. Spitzenkappung)

ergänzt um Annahmen auf der Netzseite:

Kombination von

bewährten Instrumenten gemäß den Planungsgrundsätzen (u.a. NOVA-Prinzip, verbessertes Freileitungsmonitoring)

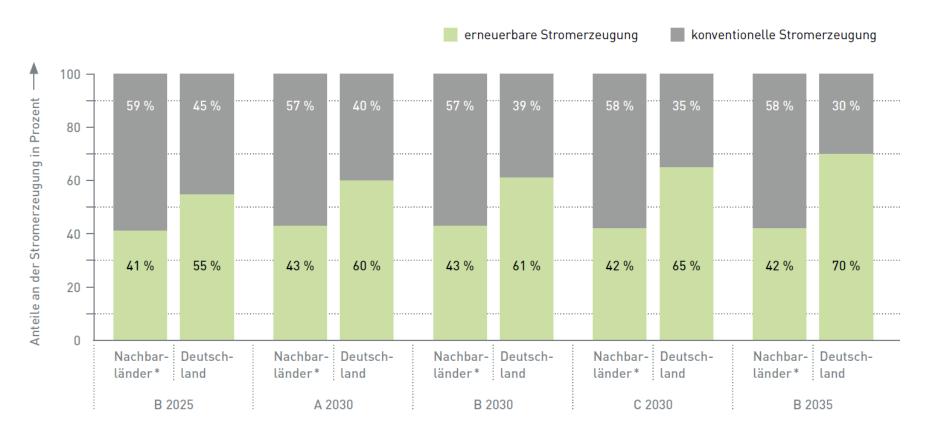
mit dem **Einsatz innovativer Technologien** in Netzplanung und Netzbetriebsführung (u.a. lastflusssteuernde Maßnahmen, Auslastung bis 4000 A, km-optimierte Kombination von AC und DC, <u>keine</u> Engpassfreiheit \rightarrow Puffer für zukünftige Entwicklungen)

ÜNB legen ambitioniertes Konzept vor, setzen auf Entwicklung bei allen Akteuren der Energiewende

Fazit (II)

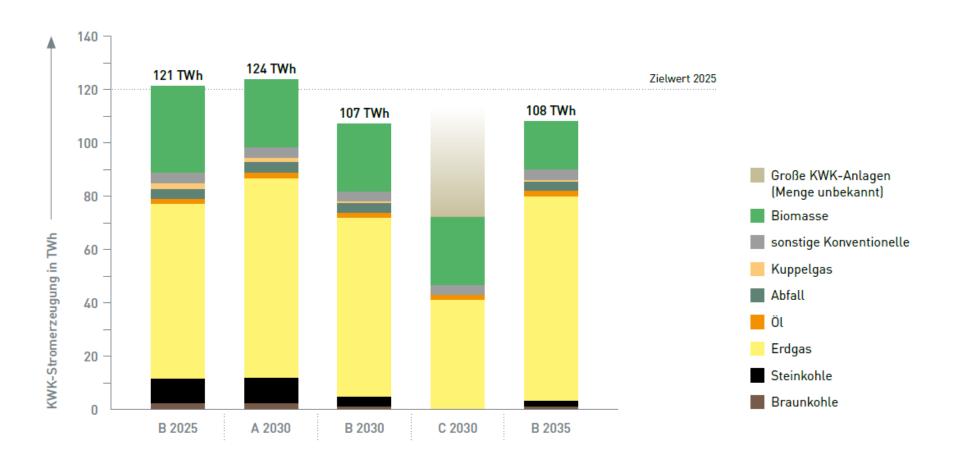
Ergebnis des NEP 2030 (2019):

- Ambitioniertere EE-Ziele (>65% 2030) können mit vergleichbaren
 Trassen-km wie im NEP 2030 (2017) integriert werden
- Kombination von AC und DC (+4 GW HGÜ in 2030, +2 weitere GW HGÜ in 2035) ermöglicht eine wirksame Integration erneuerbarer Energien in das Stromnetz und zeigt sich passfähig für weiter ansteigende EE-Anteile bei gleichzeitiger Offenheit für zukünftige technologische Entwicklungen
- Weiterentwicklung von marktlichen Anreizen/Geschäftsmodellen und technologischen Innovationen durch vielfältige Akteure der Energiewende erforderlich, damit von ÜNB getroffene Annahmen auch realistisch werden
- Steigender Bedarf an Blindleistungskompensation zeigt: neben Verstärkung und Ausbau sind künftig auch Steuerbarkeit und Stabilität des Netzes verstärkt zu berücksichtigen
- → NEP 2030 (2019) adäquate Grundlage für Bundesbedarfsplan

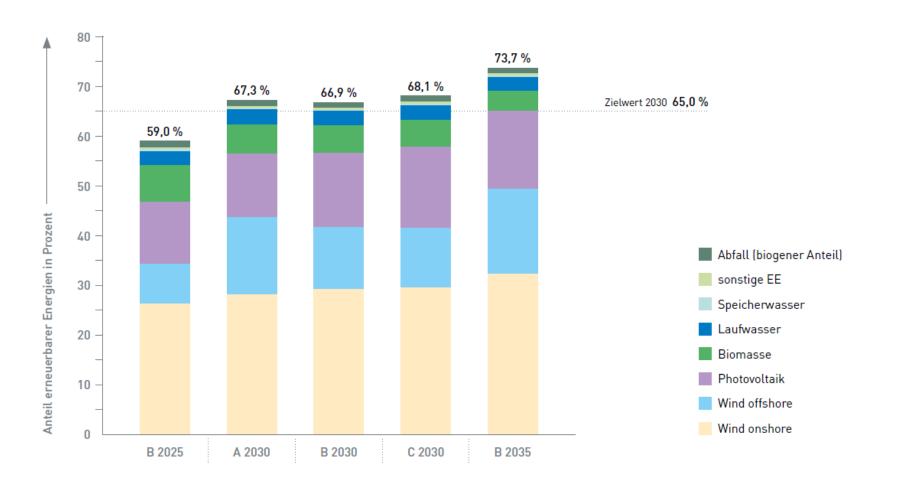


Backup

NETZ ENTWICKLUNGS PLAN **STROM**


Anteil der konventionellen und erneuerbaren Stromerzeugung an der Gesamterzeugung

^{*}Länder mit gemeinsamer Grenze zu Deutschland


KWK-Erzeugung nach Primärenergietypen NEP 2030

Anteil der erneuerbaren Energien am Bruttostromverbrauch

