

OFFSHORE-

NETZENTWICKLUNGSPLAN 2014

ERSTER ENTWURF DER ÜBERTRAGUNGSNETZBETREIBER

Impressum

50Hertz Transmission GmbH

Eichenstraße 3A 12435 Berlin

www.50hertz.com

Geschäftsführung: Boris Schucht (Vorsitz), Udo Giegerich,

Dr. Frank Golletz, Dr. Dirk Biermann

Handelsregister:

Amtsgericht Charlottenburg,

HRB 84446 Umsatzsteuer-ID: DE 813473551

Amprion GmbH Rheinlanddamm 24 44139 Dortmund

www.amprion.net

Geschäftsführung: Dr. Hans-Jürgen Brick,

Dr. Klaus Kleinekorte

HRB 15940 Umsatzsteuer-ID:

Handelsregister:

Amtsgericht Dortmund,

DE 813761356

TenneT TSO GmbH Bernecker Straße 70 95448 Bayreuth

www.tennet.eu

Geschäftsführer: Martin Fuchs (Vorsitz),

Alexander Hartman

Handelsregister: Amtsgericht Bayreuth,

HRB 4923 Umsatzsteuer-ID: DE 815073514

TransnetBW GmbH

Pariser Platz Osloer Straße 15–17 70173 Stuttgart

www.transnetbw.de

Geschäftsführer: Rainer Joswig,

Dr. Rainer Pflaum

Handelsregister: Registergericht Stuttgart, HRB 740510

Umsatzsteuer-ID: DE 191008872

Redaktion

Olivier Feix (50Hertz Transmission GmbH), Ulrike Hörchens (TenneT TSO GmbH)

E-Mail: info@netzentwicklungsplan.de www.netzentwicklungsplan.de

Gestaltung

CB.e Clausecker | Bingel AG Agentur für Kommunikation www.cbe.de

Stand

16. April 2014

INHALTSVERZEICHNIS

Tabellenverzeichnis			
Abkürzungsverzeichnis			
Vorwort			
1 Einführung			
1.1 Schritte zur Erstellung des Offshore-Netzentwicklungsplans			
1.2 Einflussgrößen des Offshore-Netzentwicklungsplans	 	 	14
2 Ausgangsdaten	 	 	20
2.1 Schnittstellen mit dem Netzentwicklungsplan Strom: Szenariorahmen und Netzverknüpfungspunkte .	 	 	21
2.2 Das Start-Offshorenetz			
3 Ermittlung des Offshore-Netzausbaubedarfs	 	 	29
3.1 Zeitliche Staffelung der Offshore-Netzausbaumaßnahmen			
3.2 Offshore-Netzausbau in den Szenarien A 2024, B 2024, C 2024, B 2034			
3.2.1 Maßnahmen des Zubau-Offshorenetzes im Szenario A 2024			
3.2.2 Maßnahmen des Zubau-Offshorenetzes im Szenario B 2024			
3.2.3 Maßnahmen des Zubau-Offshorenetzes im Szenario C 2024			
3.2.4 Maßnahmen des Zubau-Offshorenetzes im Szenario B 2034	 	 	47
3.3 Investitionsvolumen des Offshore-Netzausbaus			
4 Stand der Umsetzung	 	 	54
5 Konsultation	 	 	57
6 Fazit			50
V TWEN	 	 • •	
Glossar	 	 	62
Literaturverzeichnis	 	 	70
Anhang zum Offshore-Netzentwicklungsplan (Darstellung der Maßnahmen)			72

ABBILDUNGSVERZEICHNIS

Abbildung 1:	Der Gesamtprozess	13
Abbildung 2:	Unterteilung der Nordsee in ausschließliche Wirtschaftszone und Küstenmeer	15
Abbildung 3:	Unterteilung der Ostsee in ausschließliche Wirtschaftszone und Küstenmeer	16
Abbildung 4:	Zweistufiges Vorgehen zur Spezifizierung eines Netzanbindungssystems	17
Abbildung 5:	Cluster in der Nordsee	22
Abbildung 6:	Cluster in der Ostsee	23
Abbildung 7:	Start-Offshorenetz Nordsee	27
Abbildung 8:	Start-Offshorenetz Ostsee	28
Abbildung 9:	Deutsche Nordsee mit Entfernungszonen	32
Abbildung 10:	Deutsche Ostsee mit Entfernungszonen	33
_	Szenario A 2024 Nordsee	
Abbildung 12:	Szenario A 2024 Ostsee	40
-	Szenario B 2024 Nordsee	
	Szenario B 2024 Ostsee	
Abbildung 15:	Szenario C 2024 Nordsee	45
Abbildung 16:	Szenario C 2024 Ostsee	46
Abbildung 17:	Szenario B 2034 Nordsee	49
Abbildung 18:	Szenario B 2034 Ostsee	50
Abbildung 19:	Schätzung des Investitionsvolumens in Abhängigkeit der Szenarien	51
Abbildung 20:	Mögliche Risiken bei der Errichtung von Offshore-Netzanbindungen	53

TABELLENVERZEICHNIS

Tabelle 1:	Szenariorahmen vom 30.08.2013, installierte Erzeugungsleistung Offshore-Windenergie	. 21
Tabelle 2:	Cluster mit der jeweilig erwarteten Erzeugungsleistung – Nordsee	. 24
Tabelle 3:	Cluster mit der jeweilig erwarteten Erzeugungsleistung – Ostsee	. 24
Tabelle 4:	Netzverknüpfungspunkte für Offshore-Netzanbindungssysteme in den Bundesländern Schleswig-Holstein (SH), Niedersachsen (NI) und Mecklenburg-Vorpommern (MV)	. 25
Tabelle 5:	Start-Offshorenetz	. 26
Tabelle 6:	Noch zu erschließendes Potenzial im Kurzfrist-Planungshorizont für die deutsche Ostsee	.35
Tabelle 7:	Noch zu erschließendes Potenzial der Zone 1 im Kurzfrist-Planungshorizont für die deutsche Nordsee	.36
Tabelle 8:	Noch zu erschließendes Potenzial der Zone 2 im Kurzfrist-Planungshorizont für die deutsche Nordsee	.37
Tabelle 9:	Maßnahmen des Zubau-Offshorenetzes im Szenario A 2024.	.38
Tabelle 10:	Maßnahmen des Zubau-Offshorenetzes im Szenario B 2024	. 41
Tabelle 11:	Maßnahmen des Zubau-Offshorenetzes im Szenario C 2024	. 44
Tabelle 12:	Maßnahmen des Zubau-Offshorenetzes im Szenario B 2034	. 47
Tabelle 13:	Schätzung der Anschaffungs- und Herstellungskosten pro Anlagenteil eines DC-Netzanbindungssystems im Zubau-Offshorenetz in der Nordsee	. 52
Tabelle 14:	Schätzung der Anschaffungs- und Herstellungskosten pro Anlagenteil eines AC-Netzanbindungssystems im Zubau-Offshorenetz in der Ostsee	. 52
Tahelle 15	Stand der Umsetzung von im 0-NFP 2013 hestätigten Projekten und Projekten des Start-Offshorenetzes	55

ABKÜRZUNGSVERZEICHNIS

Abkürzungen Bundesländer

MV Mecklenburg-Vorpommern

NI Niedersachsen

SH Schleswig-Holstein

Weitere Abkürzungen

Abs. Absatz

AC Alternating current (Wechselstrom/Drehstrom)

a. F. Alte Fassung

AWZ Ausschließliche Wirtschaftszone (Bereich außerhalb des Küstenmeeres)

BfN Bundesamt für Naturschutz

BFO Bundesfachplan Offshore

BNetzA Bundesnetzagentur

BSH Bundesamt für Seeschifffahrt und Hydrographie

DC Direct current (Gleichstrom)

EEG Erneuerbare Energien Gesetz

EnWG Energiewirtschaftsgesetz

Mio. Million

Mrd. Milliarde

MW Megawatt

NEP Netzentwicklungsplan Strom

NOR Nordsee

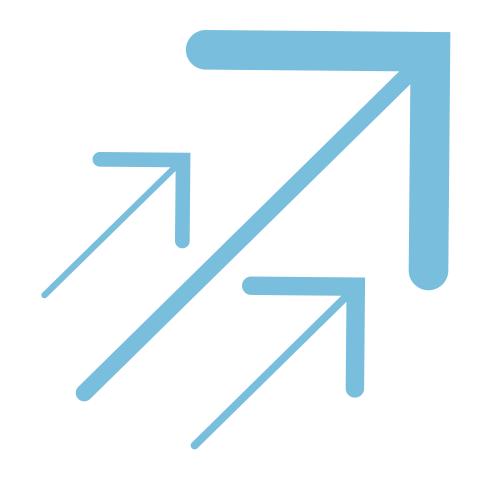
NVP Netzverknüpfungspunkt

O-NEP Offshore-Netzentwicklungsplan

OST Ostsee

OWP Offshore-Windpark

S. Satz


TSO Transmission System Operator (Übertragungsnetzbetreiber)

TYNDP Ten Year Network Development Plan

ÜNB Übertragungsnetzbetreiber

VDE Verband der Elektrotechnik, Elektronik und Informationstechnik, Frankfurt/Main

VORWORT

VORWORT

Sehr geehrte Leserin, sehr geehrter Leser,

vor sich sehen Sie den zweiten Offshore-Netzentwicklungsplan, den die vier deutschen Übertragungsnetzbetreiber 50Hertz, Amprion, TenneT und TransnetBW gemeinsam erarbeitet haben und nun zusammen mit dem Netzentwicklungsplan Strom zur öffentlichen Konsultation stellen.

Der Offshore-Netzentwicklungsplan bildet die Infrastruktur für die Anbindung der Offshore-Windenergie in den nächsten zehn beziehungsweise 20 Jahren ab. Gemeinsam mit dem Netzentwicklungsplan Strom ist der Offshore-Netzentwicklungsplan eine wesentliche Voraussetzung, um die Ziele der Energiewende zu erreichen, denn die in der Nord- und Ostsee erzeugte Windenergie soll zukünftig einen wesentlichen Beitrag zur Energieversorgung leisten. Um ihren effizienten und nachhaltigen Ausbau zu ermöglichen, hat der Gesetzgeber die vier Übertragungsnetzbetreiber mit der Erstellung des Offshore-Netzentwicklungsplans beauftragt.

Die Übertragungsnetzbetreiber werden ihren Beitrag dazu leisten, den hohen Grad an sicherer und verlässlicher Versorgung mit elektrischer Energie in Deutschland zu bewahren. Dazu planen, entwickeln und bauen sie das Netz der Zukunft. Die Entwicklung einer zukunftsfähigen Strominfrastruktur wird jedoch nur im Zusammenwirken aller Akteure aus Zivilgesellschaft, Politik und Wirtschaft gelingen. Der dringend notwendige Netzausbau braucht Akzeptanz und ist auf die Unterstützung aller angewiesen, die Deutschlands Spitzenstellung bei Versorgungssicherheit erhalten und die Energiewende erfolgreich umsetzen wollen.

Der Offshore-Netzentwicklungsplan bildet im Zusammenspiel mit dem Netzentwicklungsplan Strom für drei verschiedene Szenarien jeweils ein voll funktionsfähiges Übertragungsnetz für das Jahr 2024 ab. Ein Szenario wird in das Jahr 2034 fortgeschrieben. Durch die regelmäßige Aktualisierung des Offshore-Netzentwicklungsplans können neue Erkenntnisse bezüglich der Erzeugungsszenarien sowie der technischen und der rechtlichen Entwicklungen zeitnah in zukünftige Offshore-Netzentwicklungspläne einfließen.

Dies ist für diesen Offshore-Netzentwicklungsplan vor dem Hintergrund der von der Bundesregierung im Koalitionsvertrag sowie den Eckpunkten für eine EEG-Reform vorgenommenen Anpassung der energiepolitischen Ziele von besonderer Bedeutung. Den Übertragungsnetzbetreibern war es weder vom zeitlichen Ablauf noch vom Grad der Konkretisierung der politischen Vorgaben her möglich, diese neuen Erkenntnisse bereits in die Berechnungen zum Offshore-Netzentwicklungsplan 2014 einfließen zu lassen. Grundlage war stattdessen der von der Bundesnetzagentur am 30.08.2013 nach öffentlicher Konsultation genehmigte Szenariorahmen.

Begleitend zum Offshore-Netzentwicklungsplan 2014 veröffentlichen die Übertragungsnetzbetreiber Sensitivitätsberechnungen, um den Einfluss einzelner Faktoren, hier konkret die zeitliche Streckung des Offshore-Ausbaus und eine Spitzenkappung der neuen EEG-Anlagen, auf den Netzausbau zu beleuchten. Diese Sensitivitäten werden zusätzliche Hinweise liefern, wie sich die Änderung einzelner politischer Rahmenbedingungen auf die Netzentwicklung auswirken können. Auch damit leisten die Übertragungsnetzbetreiber einen Beitrag zur aktuellen EEG-Reformdebatte. Diese Sensitivitäten können jedoch nicht mehr als zusätzliche Indikatoren liefern, sie ermöglichen nicht die Ermittlung eines neuen, zu bestätigenden NEP-Zielnetzes. Weitere Punkte der EEG-Reform, die derzeit noch nicht hinreichend konkretisiert sind, haben nämlich ganz entscheidende Auswirkungen auf den Netzausbau. Diese müssen ebenfalls noch politisch definiert und im Anschluss dann modelliert werden, um einen vollständigen Rahmen für die genaue Bewertung der Auswirkungen auf den Netzentwicklungsbedarf abzubilden.

Vorwort

Die Übertragungsnetzbetreiber stellen mit dem vorliegenden Plan bereits den zweiten Offshore-Netzentwicklungsplan zur öffentlichen Konsultation. Um den zu konsultierenden Offshore-Netzentwicklungsplan inhaltlich nicht zu überfrachten und im Sinne der Transparenz des Gesamtprozesses eine bessere Lesbarkeit und Verständlichkeit zu erreichen, wurden im Offshore-Netzentwicklungsplan 2014 Zusatzinformationen zur inhaltlichen Vertiefung auf die Netzentwicklungsplan-Webseite www.netzentwicklungsplan.de ausgelagert. Hierbei ist zu berücksichtigen, dass nicht alle per Link aufrufbaren Dokumente notwendigerweise Teil des Offshore-Netzentwicklungsplans und damit einer Konsultation zugänglich sind. Alle Verlinkungen, die auf Projektmaßnahmen verweisen, sind zum Offshore-Netzentwicklungsplan gehörende und damit konsultationsfähige Dokumente. Dokumente, die der weitergehenden Information und Vertiefung eines Themas dienen, sind rein informatorisch und nicht Teil der Konsultation. Wir bitten daher davon abzusehen, sich in der Konsultation zum Offshore-Netzentwicklungsplan 2014 zu diesen speziellen Fachdokumenten zu äußern.

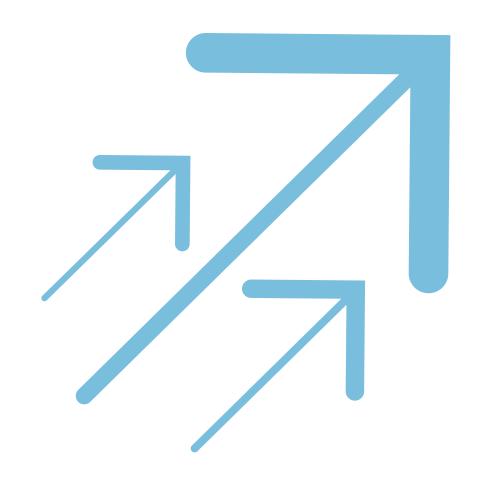
Im Anschluss an das Konsultationsverfahren werden die eingegangenen Stellungnahmen zu beiden Netzentwicklungsplänen gesichtet und ausgewertet. Die auf dieser Basis überarbeiteten Entwürfe übergeben die Übertragungsnetzbetreiber der Bundesnetzagentur zur Prüfung.

Wir hoffen auf eine rege Beteiligung an der Konsultation. Denn der Offshore-Netzentwicklungsplan lebt von den Perspektiven, dem Wissen und den konstruktiven Vorschlägen aus allen Bereichen der Gesellschaft.

Unser Dank gilt allen unseren Mitarbeiterinnen und Mitarbeitern, die mit hohem Einsatz an der Erstellung dieses Offshore-Netzentwicklungsplans 2014 mitgewirkt haben.

Boris Schucht

50Hertz Transmission GmbH


Dr. Klaus Kleinekorte

Amprion GmbH

Martin Fuchs TenneT TSO GmbH

Rainer Joswig
TransnetBW GmbH

1 EINFÜHRUNG

1 EINFÜHRUNG

Der vorliegende Offshore-Netzentwicklungsplan (O-NEP) 2014 basiert wie der erste O-NEP 2013 auf der Novelle des Energiewirtschaftsgesetzes (EnWG), dem "Dritten Gesetz zur Neuregelung energiewirtschaftsrechtlicher Vorschriften". Der O-NEP beschreibt jährlich eine zwischen allen Übertragungsnetzbetreibern (50Hertz, Amprion, TenneT, TransnetBW) abgestimmte Ausbauplanung des Offshorenetzes und weist dabei alle Maßnahmen aus, die in den nächsten zehn beziehungsweise 20 Jahren für einen schrittweisen, bedarfsgerechten und wirtschaftlichen Ausbau sowie einen sicheren und zuverlässigen Betrieb der Offshore-Netzanbindungssysteme erforderlich sind. Er stellt zusammen mit dem Netzentwicklungsplan Strom (NEP) für die Onshore-Netzausbauplanung den bundesweit abgestimmten Netzausbaubedarf dar. Die Netzanbindung von Offshore-Windparks (OWP) in der Nordsee erfolgt bedingt durch die Lage der geeigneten Netzverknüpfungspunkte durch TenneT, die Netzanbindung von Offshore-Windparks in der Ostsee durch 50Hertz. Beide sind gesetzlich verpflichtet, den Anschluss vom Netzanschlusspunkt auf der Umspannplattform des Offshore-Windparks bis zum Netzverknüpfungspunkt (NVP) im Übertragungsnetz zu errichten und zu betreiben.

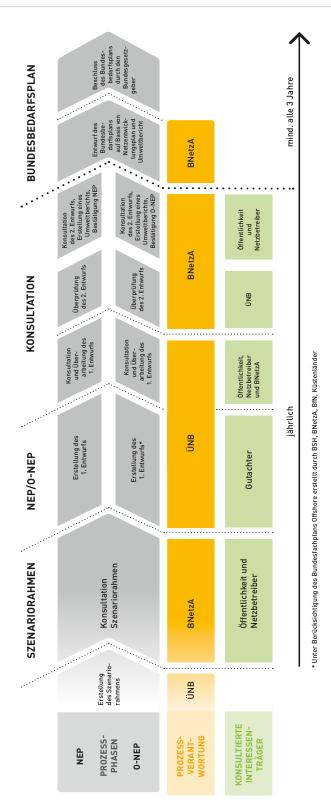
Der O-NEP enthält verbindliche Vorgaben für den koordinierten und effizienten Ausbau des Offshorenetzes (§ 17 a ff. EnWG) und ersetzt den bis zur Novelle des EnWG bis Ende 2012 geltenden individuellen Netzanbindungsanspruch der Offshore-Windpark-Projektträger (§ 17 Abs. 2a EnWG a. F.). Die Übertragungsnetzbetreiber (ÜNB) sind dabei verpflichtet, die im O-NEP enthaltenen Ausbaumaßnahmen dem vorgesehenen Zeitplan entsprechend umzusetzen.

Im ersten O-NEP 2013 wurden Historie, rechtliche Grundlagen, Methodik und Ausgangsdaten sowie die technischen Systeme, die zur Bereitstellung der notwendigen Übertragungskapazität grundsätzlich geeignet sind, ausführlich beschrieben und erläutert. Der vorliegende zweite O-NEP 2014 baut darauf auf und beschränkt sich daher auf die wesentlichen, für das Verständnis notwendigen Erläuterungen zu diesen Themen. Hieraus resultiert eine neue, übersichtliche Gliederung des O-NEP 2014.

Weiterführende Informationen zur Historie, rechtlichen Grundlagen und zum Gesamtprozess als Ergänzung des vorliegenden Kapitels 1 sind abrufbar unter www.netzentwicklungsplan.de./ZkR. Zu weiteren Themen und Kapiteln finden sich für interessierte Leser und Leserinnen weiterführende Informationen im Internet unter www.netzentwicklungsplan.de/ZkB.

1.1 Schritte zur Erstellung des Offshore-Netzentwicklungsplans

Die Übertragungsnetzbetreiber erstellen den O-NEP auf Grundlage des § 17b Abs. 1 S. 1 EnWG. Der O-NEP berücksichtigt die Festlegungen des jeweils aktuellen Bundesfachplans Offshore des Bundesamtes für Seeschifffahrt und Hydrographie (BSH) im Sinne des § 17a Abs. 1 EnWG und des von der Bundesnetzagentur (BNetzA) konsultierten und genehmigten Szenariorahmens gemäß § 12a Abs. 1 EnWG (siehe hierzu die Ausführungen in Kapitel 2).


Der erste Entwurf des O-NEP 2014 wird entsprechend den Vorgaben des § 17b Abs. 2 EnWG gemeinsam mit dem NEP 2014 am 16. April 2014 an die Bundesnetzagentur übergeben. Zuvor werden die Entwürfe der Netzentwicklungspläne auf www.netzentwicklungsplan.de veröffentlicht und durch die Übertragungsnetzbetreiber ein Konsultationsverfahren eröffnet. Details zum Konsultationsverfahren und die Ergebnisse der Konsultation des ersten Entwurfs werden im zweiten Entwurf des O-NEP vorgestellt (Kapitel 5).

Die BNetzA prüft danach den zweiten überarbeiteten Entwurf des O-NEP mit den darin vorgeschlagenen Maßnahmen und kann die Überarbeitung des O-NEP veranlassen. Zeitgleich führt sie eine Strategische Umweltprüfung durch, die die grundsätzliche Beeinflussung der Umwelt durch die im O-NEP identifizierten Maßnahmen zum Ausbau des Offshorenetzes bewertet. Die Ergebnisse werden in einem Umweltbericht dokumentiert. O-NEP und Umweltbericht werden durch die BNetzA zur Konsultation veröffentlicht.

Im Anschluss erfolgt die Bestätigung des O-NEP gemäß § 17c EnWG durch die Bundesnetzagentur, nachdem sie in Abstimmung mit dem BSH die Übereinstimmung des O-NEP mit den gesetzlichen Anforderungen geprüft hat. Der durch die BNetzA bestätigte O-NEP bildet die Grundlage für die Ausbauplanung des Offshorenetzes durch die Übertragungsnetzbetreiber und ist damit eine wichtige Voraussetzung für eine nachhaltige Entwicklung der Offshore-Windenergie.

Mindestens alle drei Jahre übermittelt die BNetzA der Bundesregierung den jeweils aktuellen NEP und den O-NEP als Grundlage für einen Bundesbedarfsplan. Die Bundesregierung legt den Entwurf des Bundesbedarfsplans dem Gesetzgeber vor (§ 12e Abs. 1 EnWG). Mit Erlass des Bundesbedarfsplans durch den Gesetzgeber werden für die darin enthaltenen Vorhaben die energiewirtschaftliche Notwendigkeit und der vordringliche Bedarf verbindlich festgestellt (§ 12e Abs. 4 EnWG).

Abbildung 1: Der Gesamtprozess

Quelle: Übertragungsnetzbetreiber

1.2 Einflussgrößen des Offshore-Netzentwicklungsplans

Eine feste Randbedingung für den O-NEP ist das Start-Offshorenetz, also die bereits in Betrieb befindlichen Netzanbindungssysteme sowie noch zu errichtende Netzanbindungssysteme für Offshore-Windparks, die eine gültige Netzanbindungszusage durch die Übertragungsnetzbetreiber haben oder mit deren Realisierung gemäß O-NEP begonnen wurde.

Eine weitere Einflussgröße ist der Szenariorahmen, der die Randbedingungen der künftigen Netznutzung beschreibt und wesentliche Angaben zur zukünftigen Erzeugungsleistung und zum Verbrauch enthält. Die Übertragungsnetzbetreiber machen einen Vorschlag zum Szenariorahmen, den die Bundesnetzagentur zur Konsultation stellt. Unter Berücksichtigung der eingegangenen Stellungnahmen und der eigenen behördlichen Einschätzung wird der Entwurf des Szenariorahmens durch die BNetzA genehmigt. Der genehmigte Szenariorahmen vom 30.08.2013* ist der feste Ausgangspunkt für die Erarbeitung des O-NEP 2014 sowie des NEP 2014. Mögliche Änderungen der Ausbauziele für Offshore-Windenergie können wiederum in den Szenariorahmen für den O-NEP und NEP 2015 einfließen (näheres siehe Kapitel 2).

Zu den Einflussgrößen gehört auch der vom Bundesamt für Seeschifffahrt und Hydrographie jährlich erstellte Bundesfachplan Offshore. Dieser legt für die ausschließliche Wirtschaftszone (AWZ) die Trassen für Netzanbindungssysteme, Standorte für Umspann- und Konverterplattformen, standardisierte Technikvorgaben und Planungsgrundsätze fest und definiert Grenzkorridore zwischen AWZ und Küstenmeer (siehe Abb. 2 und 3), durch die die Trassen der Netzanbindungssysteme (standardisierte technische Systeme zum modularen Ausbau des Offshorenetzes) geführt werden. Der Bundesfachplan Offshore gibt damit gemeinsam mit dem Szenariorahmen das Mengengerüst für den O-NEP vor.

Einfluss auf den O-NEP hat auch der NEP. Der O-NEP berücksichtigt die im NEP ausgewiesenen Maßnahmen zur Netzoptimierung, Netzverstärkung und zum Netzausbau an Land. Er übernimmt als Eingangsgrößen die Netzverknüpfungspunkte (elektrische Knotenpunkte für die Verbindung der Offshore-Leitungen mit dem Onshorenetz), die das Ergebnis
der im Rahmen des NEP durchgeführten Netzanalysen sind.¹

http://www.netzausbau.de/cln_1431/DE/BundesweitePlaene/Charlie/SzenariorahmenCharlie/SzenariorahmenCharlie-node.html*

¹ Näheres siehe Tabelle 4: Netzverknüpfungspunkte für Offshore-Netzanbindungssysteme in den Bundesländern Schleswig-Holstein (SH), Niedersachsen (NI) und Mecklenburg-Vorpommern (MV).

Abbildung 2: Unterteilung der Nordsee in ausschließliche Wirtschaftszone und Küstenmeer

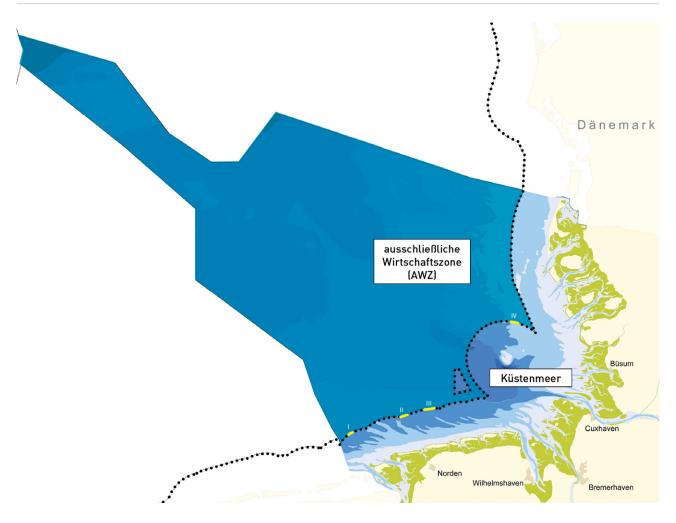
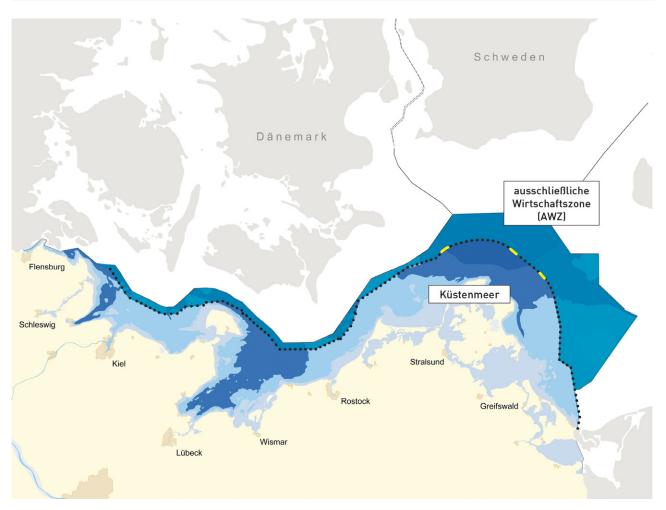



Abbildung 3: Unterteilung der Ostsee in ausschließliche Wirtschaftszone und Küstenmeer

Die auf nationaler Ebene im O-NEP und NEP entwickelten Ergebnisse finden Eingang in den Ten-Year Network Development Plan (TYNDP) der Europäischen Union, der den Netzausbaubedarf für die Netze aller Mitgliedstaaten von der Vereinigung der europäischen Übertragungsnetzbetreiber (ENTSO-E) beschreibt.

Ein weiterer Einflussfaktor für den O-NEP sind die Errichtungskapazitäten, die kurz in Kapitel 3 beschrieben werden.

1.3 Bestimmung der erforderlichen Maßnahmen

Im Rahmen des O-NEP ermitteln die Übertragungsnetzbetreiber Maßnahmen, die nicht nur für einen schrittweisen, bedarfsgerechten und wirtschaftlichen Ausbau des Offshorenetzes notwendig sind, sondern auch eine geeignete zeitliche Staffelung der Netzanbindungssysteme in Abhängigkeit der Szenarien beinhalten.

Bestimmung des Zubau-Offshorenetzes

Der Umfang des bedarfsgerechten Ausbaus von Offshore-Netzanbindungssystemen ist durch den Szenariorahmen bereits weitgehend vorgegeben. Unter Berücksichtigung der durch den Bundesfachplan Offshore vorgegebenen technischen Standards und der geographischen Verhältnisse sowie der im NEP festgelegten verfügbaren Netzverknüpfungspunkte werden für jedes Szenario die erforderlichen Maßnahmen ermittelt (siehe Kapitel 3).

Die Realisierungszeiten von Netzanbindungssystemen liegen in der Regel über denen von Offshore-Windparks. Zu dem Zeitpunkt, an dem mit der Planung und Realisierung eines Netzanbindungssystems begonnen werden muss, kann der Realisierungszeitpunkt einzelner Offshore-Windparks meist nicht hinreichend belastbar bestimmt werden. Im O-NEP wurden die Ausbaumaßnahmen deshalb zunächst unter dem Gesichtspunkt der Effizienz anhand windparkunspezifischer, diskriminierungsfreier Kriterien ermittelt. Die windparkunspezifische Planung der Netzanbindungssysteme im O-NEP bildet die erste von zwei Planungsstufen. In der zweiten Planungsstufe wird die Übertragungskapazität jedes Netzanbindungssystems einem oder anteilig mehreren Offshore-Windparks zugewiesen. Dieses diskriminierungsfreie Verfahren zur Vergabe gemäß § 17d Abs. 3 EnWG wird durch die Bundesnetzagentur durchgeführt und im Rahmen des O-NEP nicht behandelt.

Abbildung 4: Zweistufiges Vorgehen zur Spezifizierung eines Netzanbindungssystems

STUFE 1 Planung von Netzanbindungssystemen für Offshore-WindparkCluster und zeitliche Staffelung der erforderlichen Maßnahmen. STUFE 2 Zuweisung von Netzanschlusskapazität an Offshore-Windparks durch die Bundesnetzagentur.

Quelle: Übertragungsnetzbetreiber

Zeitliche Staffelung der Maßnahmen

Um eine rechtzeitige Planung und Realisierung der Netzanbindungssysteme sowie eine Synchronisierung mit der Errichtung der Offshore-Windparks zu ermöglichen, muss bereits frühzeitig eine zeitliche Ausbauplanung des Offshorenetzes vorgenommen werden. Diese ist wesentlicher Bestandteil des O-NEP (§ 17b Abs. 1 S. 2 EnWG). Hierdurch soll gewährleistet werden, dass die Kapazitäten zur Aufnahme der Offshore-Windenergie wirtschaftlich und bedarfsgerecht errichtet werden.

Die Kriterien für eine zeitliche Staffelung wurden in Anlehnung an die in § 17b Abs. 2 EnWG vorgeschlagenen Kriterien im O-NEP definiert. Darauf aufbauend haben die Übertragungsnetzbetreiber eine zeitliche Staffelung für die Errichtung der Offshore-Netzanbindungssysteme ermittelt. Die angegebenen Realisierungstermine werden laufend durch die Übertragungsnetzbetreiber überprüft und im Rahmen der jährlichen Überarbeitung des O-NEP aktualisiert.

Die Kriterien zur zeitlichen Staffelung aller Maßnahmen werden in Kapitel 3 erläutert und begründet. Es werden zusätzlich Angaben zum geplanten Zeitpunkt der Inbetriebnahme und zu verbindlichen Terminen für den Beginn der Umsetzung für jedes Projekt gemacht.

Sicherstellung eines bedarfsgerechten Offshore-Netzausbaus durch jährliche Überprüfung der zeitlichen Staffelung und des Umsetzungstempos

Durch den jährlich aktualisierten Szenariorahmen kann sich Anpassungsbedarf im Hinblick auf den Umfang, die Art, die Abfolge und die geplanten Umsetzungszeiträume der Maßnahmen ergeben, dem in der jährlichen Überarbeitung durch die Übertragungsnetzbetreiber insbesondere zur Sicherstellung eines bedarfsgerechten Offshore-Netzausbaus Rechnung getragen wird.

Außerdem werden die Übertragungsnetzbetreiber bei der jährlichen Überarbeitung des O-NEP in besonderem Maße auch die tatsächliche Entwicklung der Offshore-Windenergie und den entsprechenden Bedarf für Netzanschlusskapazitäten berücksichtigen, indem sie auch die bereits fertiggestellten bzw. in Auftrag gegebenen Netzanbindungen und deren tatsächliche Nutzung durch Offshore-Windparks überprüfen. Wenn sich dabei herausstellt, dass die Nutzung der bereits tatsächlich vorhandenen oder in Auftrag gegebenen Netzanschlusskapazität nicht hinreichend sichergestellt ist, werden die Übertragungsnetzbetreiber die Beauftragung aller weiteren Netzanbindungen zeitlich anpassen. Damit wird gewährleistet, dass der Offshore-Netzausbau nicht an der tatsächlichen Nachfrage nach Netzanschlusskapazität vorbei realisiert wird. Stranded Investments, also Investitionen in völlig oder teilweise ungenutzte Netzanbindungen, sollen somit im volkswirtschaftlichen Interesse vermieden werden.

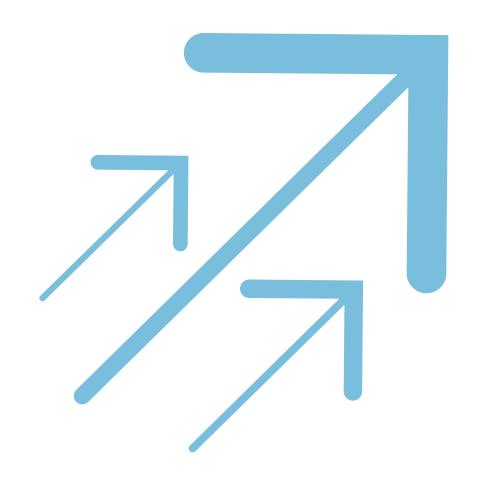
1.4 Grenzen des Offshore-Netzentwicklungsplans

Der vorliegende O-NEP beschreibt keine konkreten Trassenverläufe. Es werden die Maßnahmen bestimmt, die unter Berücksichtigung technischer, wirtschaftlicher und räumlicher Rahmenbedingungen geeignet sind, die nach dem Szenariorahmen erwartete installierte Erzeugungsleistung aus Offshore-Windenergie an das Übertragungsnetz anzubinden. Dieses Vorgehen trägt auch dem Umstand Rechnung, dass zum Zeitpunkt des Beginns der Errichtung der Netzanbindungssysteme noch nicht feststeht, an welchen konkreten Offshore-Windpark die BNetzA die Übertragungskapazität vergibt.

Der O-NEP bildet zusammen mit dem NEP, dem Bundesfachplan Offshore und den Plänen der Küstenländer ein zusammenhängendes Planwerk. Die Abstimmung der einzelnen Pläne aufeinander ist ein iterativer Prozess. Die Änderung eines Planes hat Rückwirkungen auf die anderen Pläne, die im Folgenden entsprechend anzupassen sind. Es ist zu erwarten, dass mehrere Iterationen zur Optimierung des umfassenden Planwerkes erforderlich sind.

Die in diesem O-NEP entwickelten Maßnahmen sind abhängig davon, ob geeignete Trassen gefunden werden und die Netzverknüpfungspunkte – sofern es sich um neu zu errichtende Anlagen handelt – wie geplant realisiert werden können. Insbesondere im küstennahen Bereich sind bei der Trassenfindung die geomorphologischen Gegebenheiten, Schutz der Meeresumwelt, Schifffahrtswege und Altlasten zu berücksichtigen. Dieser sensible Bereich ist für die Trassensuche ein schwer zu kalkulierender Engpass. Sollte sich im Rahmen der Detailplanung herausstellen, dass in bestimmten Räumen keine Trassen für Netzanbindungssysteme gefunden werden können, kann dies Änderungen der den einzelnen Netzanbindungssystemen im O-NEP zugeordneten Netzverknüpfungspunkte zur Folge haben.

Auch wenn einzelne Maßnahmen aus dem NEP nicht umgesetzt werden oder sich die Umsetzung verzögert, kann dies Rückwirkungen auf die im O-NEP ermittelten Maßnahmen haben.


1.5 Anderweitige Planungsmöglichkeiten

Als anderweitige Planungsmöglichkeiten sind energiewirtschaftlich unterschiedliche Entwicklungen (Szenarien) von den Übertragungsnetzbetreibern betrachtet worden.

Nicht geprüft wurden auf der abstrakten Ebene des O-NEP konkrete räumliche Alternativen zu Einzelmaßnahmen. Im O-NEP geht es um die grundsätzliche Ermittlung von Lösungen für die Erschließung der Nord- und Ostsee zur Abführung der Windenergie unter den gegebenen Randbedingungen. Die konkrete Führung der Trasse steht zu diesem Zeitpunkt noch nicht fest.

Die im Anhang angegebenen Räume für mögliche Trassenverläufe stellen im Regelfall Suchräume für die spätere konkretisierende Planung dar. Hier kann es im Rahmen der nachgelagerten Planungsverfahren zu erheblichen Abweichungen kommen. Konkrete geografische Alternativen und Umweltauswirkungen können erst in der nachgelagerten Bundesfachplanung und noch konkreter im Planfeststellungsverfahren geprüft werden. Die Prüfung alternativer Trassenverläufe stellt daher keine in Betracht kommende anderweitige Planungsmöglichkeit dar und wird im Bericht auch nicht erläutert.

2 AUSGANGSDATEN

2 AUSGANGSDATEN

2.1 Schnittstellen mit dem Netzentwicklungsplan Strom: Szenariorahmen und Netzverknüpfungspunkte

Die Übertragungsnetzbetreiber (ÜNB) erarbeiten jährlich einen gemeinsamen Szenariorahmen. In den drei Szenarien A, B und C werden Annahmen zu Erzeugung, Versorgung und Verbrauch von elektrischer Energie sowie deren Austausch mit anderen Ländern für die nächsten zehn Jahre beschrieben. Szenario A geht von einem "moderaten Ausbau an erneuerbaren Energien" aus, Szenario B von einem "realitätsnahen, mittleren" Ausbau. Das Szenario B wird zudem für weitere zehn Jahre fortgeführt und stellt die wahrscheinliche Entwicklung für die nächsten 20 Jahre dar. Ein "sehr ambitionierter" Ausbau an erneuerbaren Energien kennzeichnet Szenario C.

Die Bundesnetzagentur (BNetzA) stellt den Entwurf der Übertragungsnetzbetreiber zum Szenariorahmen zur Konsultation. Unter Berücksichtigung der eingegangenen Stellungnahmen und der eigenen behördlichen Einschätzung wird der Entwurf des Szenariorahmens durch die BNetzA genehmigt. Der genehmigte Szenariorahmen ist der gemeinsame Ausgangspunkt für die Erarbeitung des Offshore-Netzentwicklungsplans (O-NEP) wie des Netzentwicklungsplans Strom (NEP). Dadurch wird eine einheitliche Planung an Land wie auf See gewährleistet.

Der Szenariorahmen für den Offshore-Netzentwicklungsplan 2014

Der genehmigte Szenariorahmen vom 30.08.2013 sieht für die installierte Erzeugungsleistung für die Offshore-Windenergie in den einzelnen Szenarien folgende Entwicklungen in Nord- und Ostsee für die Zieljahre 2024 bzw. 2034 vor:

Tabelle 1: Szenariorahmen vom 30.08.2013, installierte Erzeugungsleistung Offshore-Windenergie³

	Szenario A 2024	Szenario B 2024	Szenario B 2034	Szenario C 2024
Nordsee	10,2 GW	11,0 GW	20,1 GW	13,2 GW
Ostsee	1,3 GW	1,7 GW	5,2 GW	2,9 GW
Gesamt	11,5 GW	12,7 GW	25,3 GW	16,1 GW

Quelle: Übertragungsnetzbetreiber

Den Entwurf der Übertragungsnetzbetreiber zum Szenariorahmen finden Sie unter <u>www.netzentwicklungsplan.de/content/materialien</u>. Den vollständigen genehmigten Szenariorahmen zum 0-NEP 2014 stellt die Bundesnetzagentur auf der Webseite <u>www.netzausbau.de</u> * zur Verfügung.

Gebiete zur Nutzung von Offshore-Windenergie

Der Szenariorahmen hält die zu erwartende installierte Erzeugungsleistung aus Offshore-Windenergie in Summe fest und ermöglicht so die Berechnung der erforderlichen Übertragungskapazitäten. Um jedoch konkrete bedarfsgerechte Ausbaumaßnahmen des Offshorenetzes ableiten zu können, werden räumlich zusammenhängende Regionen zur Nutzung der Offshore-Windenergie, sogenannte Cluster, in Nord- und Ostsee durch das Bundesamt für Seeschifffahrt und Hydrographie im Bundesfachplan Offshore (BFO) ausgewiesen. Der Bundesfachplan Offshore enthält ebenfalls die erwarteten Erzeugungsleistungen der einzelnen Cluster in der ausschließlichen Wirtschaftszone (AWZ) für einen Kurzfristund einen Langfrist-Planungshorizont. Der Bundesfachplan Offshore ist gem. § 17b Abs. 1 S. 2 EnWG bei der Erarbeitung des O-NEP zu berücksichtigen. Damit fließt auch diese zeitliche Stufung des Erzeugungspotenzials in den O-NEP 2014

²Genehmigungsdokument zum Szenariorahmen 2013 der BNetzA, S. 43.

³Siehe Tabelle 12, S. 86 des Genehmigungsdokuments zum Szenariorahmen 2013 der BNetzA.

^{*}http://www.netzausbau.de/cln_1431/DE/BundesweitePlaene/Charlie/SzenariorahmenCharlie/SzenariorahmenCharlie-node.html

mit ein (siehe Tabelle 2: Cluster mit der jeweilig erwarteten Erzeugungsleistung-Nordsee und Tabelle 3: Cluster mit der jeweilig erwarteten Erzeugungsleistung-Ostsee). Zusätzlich finden im O-NEP auch Cluster im Küstenmeer, wie sie durch die Landesraumentwicklungsprogramme der einzelnen Bundesländer ausgewiesen werden, Berücksichtigung.

Abbildung 5: Cluster in der Nordsee

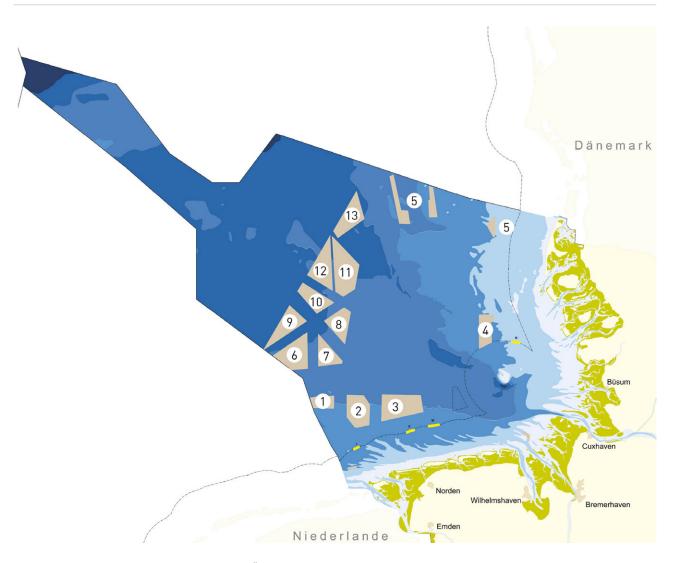


Abbildung 6: Cluster in der Ostsee

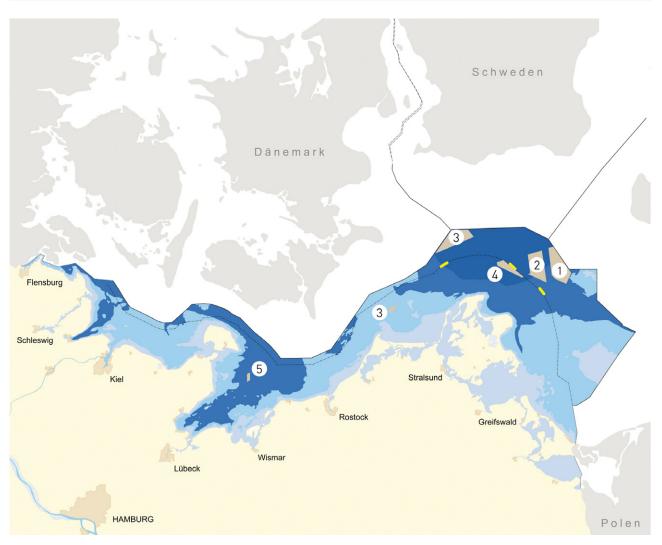


Tabelle 2: Cluster mit der jeweilig erwarteten Erzeugungsleistung – Nordsee

Cluster	Zone	Übertragungskapazität im Start-Offshorenetz in MW	Kurzfrist-Planungsh	orizont	Langfrist-Planungsh	orizont
			Erzeugungspoten- zial in MW	noch zu erschlie- ßendes Potenzial in MW	Erzeugungspoten- zial in MW	noch zu erschlie- ßendes Potenzial in MW
04	1	219	219	0	219	0
1	1	0	741 ⁵	741	7416	741
2	1	1.760	1.5015	0	1.5016	0
3	1	900	2.519 ⁵	1.619	2.5196	1.619
4	1	1.266	1.186 ⁵	0	1.1866	0
5	1/2	864	1.3565	492	1.3566	492
6	2	2.100	1.6785	0	1.6786	0
7	2	0	1.356 ⁵	1.356	1.3566	1.356
8	2	900	1.3785	78	1.3786	78
9	3	0	05	0	1.2686	1.268
10	3	0	05	0	1.1766	1.176
11	3	0	05	0	1.8546	1.854
12	3	0	05	0	1.6956	1.695
13	3	0	05	0	1.9986	1.998

Quelle: Übertragungsnetzbetreiber

Tabelle 3: Cluster mit der jeweilig erwarteten Erzeugungsleistung - Ostsee

Cluster	Zone	Übertragungskapazität im Start-Offshorenetz in MW	Kurzfrist-Planungsh	orizont	Langfrist-Planungsh	orizont
			Erzeugungspoten- zial in MW	noch zu erschlie- ßendes Potenzial in MW	Erzeugungspoten- zial in MW	noch zu erschlie- ßendes Potenzial in MW
1	1	0,0	880,07	880,0	1.650,08	770,0
2	1	0,0	0,0	0,0	1.288,0 ⁸	1.288,0
3 (AWZ)	1	288,0	288,07	0,0	722,08	434,0
3 (Küstenmeer)	1	48,3	48,3	0,0	48,3	0,0
4	1	0,0	350,0°	350,0	350,0°	0,0
5	1	0,0	0,0	0,0	ca. 150,0 ¹⁰	ca. 150,0

Quelle: Übertragungsnetzbetreiber

⁴ Küstenmeer Nordsee.

^{*}Kustenmeer Nordsee.

5 BFO Nordsee 2012 Planungshorizont 2022, Tabelle 2, S. 26.

6 BFO Nordsee 2012 Planungshorizont 2030, Tabelle 1, S. 25.

7 Überarbeiteter Entwurf des BFO Ostsee 2013, Tabelle 4, S. 20.

8 Überarbeiteter Entwurf des BFO Ostsee 2013, Tabelle 2, S. 18.

9 Stellungnahme des Ministeriums für Energie, Infrastruktur und Landesentwicklung des Landes Mecklenburg-Vorpommern.

¹⁰ Entspricht der Antragslage auf Netzanschluss.

Netzverknüpfungspunkte mit dem Onshorenetz

Die Netzverknüpfungspunkte (NVP) mit dem Onshorenetz stellen neben dem Szenariorahmen die zweite wichtige Schnittstelle zwischen dem NEP und dem O-NEP dar. Sie sind die elektrischen Knotenpunkte für die Einspeisung der Offshore-Erzeugungsleistung in das Onshorenetz. Die Auswahl des jeweiligen Netzverknüpfungspunktes und des Suchraums für neue Netzverknüpfungspunkte erfolgt im Netzentwicklungsplan Strom. Eine Änderung oder Anpassung der Netzverknüpfungspunkte im NEP beeinflusst somit unweigerlich die Ergebnisse und Zeithorizonte der Maßnahmen im O-NEP.¹¹

Die gewählten Netzverknüpfungspunkte und die Aufteilung der installierten Erzeugungsleistung auf die Netzverknüpfungspunkte in den einzelnen Szenarien, wie sie in die Netzberechnungen im NEP 2014 eingegangen sind, gehen aus Tabelle 4 hervor. Die Gesichtspunkte, nach denen die Aufteilung vorgenommen wurde, werden in Kapitel 4 des NEP erläutert.

Tabelle 4: Netzverknüpfungspunkte für Offshore-Netzanbindungssysteme in den Bundesländern Schleswig-Holstein (SH), Niedersachsen (NI) und Mecklenburg-Vorpommern (MV)¹²

Bundesland	Netzverknüpfungspunkt	Spannungs- ebene in kV		rzeugungsleis ndenergie in M\			Datum der Verfügbarkeit des Netzverknüpfungs-
			A 2024	B 2024	B 2034	C 2024	punktes
SH	Büttel	380	2.130	2.400	3.030	3.030	bereits in Betrieb
SH	Kreis Segeberg	380	-	-	1.800	-	2019
NI	Cloppenburg ¹²	380	900	900	2.700	900	2022
NI	Diele	380	1.200	1.200	1.200	1.200	bereits in Betrieb
NI	Dörpen/West	380	2.600	2.600	2.600	2.600	bereits in Betrieb
NI	Emden/Borßum	220	108	108	108	108	bereits in Betrieb
NI	Emden/0st	380	1.800	1.800	1.800	1.800	2019
NI	Unterweser ¹²	380	1.300	1.800	1.800	1.800	2024
NI	Wilhelmshaven 2	380	-	_	2.200	-	2020
NI	Inhausen	220	110	110	110	110	bereits in Betrieb
NI	Hagermarsch	110	60	60	60	60	bereits in Betrieb
NI	Elsfleth/West ¹²	380	_	_	900	700	2017
NI	Halbemond ¹²	380	-	_	1.800	900	2021
MV	Bentwisch	380	336	336	1.336	336	bereits in Betrieb
MV	Lüdershagen	220	_	350	1.700	850	bereits in Betrieb
MV	Lubmin	380	1.000	1.000	2.150	1.750	bereits in Betrieb

Quelle: Übertragungsnetzbetreiber

¹¹ Näheres siehe Tabelle 4 Netzverknüpfungspunkte für Offshore-Netzanbindungssysteme in den Bundesländern Schleswig-Holstein (SH), Niedersachsen (NI) und Mecklenburg-Vorpommern (MV).

¹² Die an den NVP für die einzelnen Szenarien festgelegten installierten Erzeugungsleistungen aus Offshore-Windenergie fließen in die Netzberechnungen im NEP 2014 ein und waren daher zu einem frühen Zeitpunkt im Erstellungsprozess des NEP 2014 festzulegen. Die Zuordnung erfolgte auf Basis der für die Szenarien im Szenariorahmen vom 30.08.2013 vorgegebenen Leistungen und der Staffelung der Netzanbindungssysteme gemäß des am 13.09.2013 zu Konsultation gestellten Entwurfs der Bestätigung des Offshore-Netzentwicklungsplans 2013 der BNetzA. Mit der Bestätigung des O-NEP 2013 durch die BNetzA im Januar 2014 und darauf aufbauenden Bemühungen des zuständigen Übertragungsnetzbetreibers, die Nutzung der dort bestätigten NVP zu optimieren, sind Änderungen gegenüber der frühen Zuweisung installierter Erzeugungsleistung aus Offshore-Windenergie an Netzverknüpfungspunkte eingetreten. Diese haben dazu geführt, dass die in dieser Tabelle abgebildete, in den NEP 2014 eingeflossene, Prognose der installierten Erzeugungsleistungen an den NVP Halbemond, Cloppenburg, Elsfleth/West und Unterweser nicht mit der sich aus dem 0-NEP 2014 (unter Berücksichtigung der Bestätigung des 0-NEP 2013 und darauf aufbauenden Optimierungsbemühungen) ergebenden Verteilung der Erzeugungsleistungen übereinstimmt. Die im genehmigten Szenariorahmen für die jeweiligen Szenarien vorgegebene Erzeugungsleistung aus Offshore-Windenergie ändert sich dadurch nicht.

2.2 Das Start-Offshorenetz

Grundlage der Netzplanung im O-NEP ist das sogenannte Start-Offshorenetz, das aus drei Komponenten besteht: Es beinhaltet die bereits betriebsbereiten Netzanbindungssysteme in der Nord-und Ostsee (Ist-Offshorenetz) und sämtliche geplanten Netzanbindungssysteme für Offshore-Windparks, die bereits ausgelöst wurden. Dies umfasst Netzanbindungssysteme für Offshore-Windparks, die über eine gültige Netzanbindungszusage gemäß § 17e Abs. 2 EnWG verfügen sowie die Maßnahmen, die gemäß des vorherigen O-NEP beauftragt wurden.

Das Start-Offshorenetz enthält Netzanbindungssysteme mit einer Gesamtlänge von 2.615 km (siehe Tabelle 5: Start-Offshorenetz). Die Investitionen hierfür belaufen sich auf rund 12 Mrd. €.

Tabelle 5: Start-Offshorenetz

Projekt	MNummer	Bezeichnung des Projekts	Nr. im TYNDP 2012	Netzverknüpfungspunkt	Übertragungska- pazität in MW ¹³
NOR-0-1	1	AC-Netzanbindungssystem Riffgat	42.166	Emden/Borßum	108
NOR-0-2	2	AC-Netzanbindungssystem Nordergründe	42.160	Inhausen	111
NOR-2-1	_	AC-Netzanbindungssystem alpha ventus	_	Hagermarsch	60
NOR-2-2	4, 5, 6	DC-Netzanbindungssystem DolWin1	42.165	Dörpen/West	800
NOR-2-3	7, 8, 9	DC-Netzanbindungssystem DolWin3	42.A83	Dörpen/West	900
NOR-3-1	10, 11, 12, 13	DC-Netzanbindungssystem DolWin2	42.A82	Dörpen/West	900
NOR-4-1	16, 17, 18	DC-Netzanbindungssystem HelWin1	42.163	Büttel	576
NOR-4-2	19, 20	DC-Netzanbindungssystem HelWin2	42.A85	Büttel	690
NOR-5-1	22, 23, 24, 45	DC-Netzanbindungssystem SylWin1	42.164	Büttel	864
NOR-6-1	_	DC-Netzanbindungssystem BorWin1	42.159	Diele	400
NOR-6-2	26, 27, 28	DC-Netzanbindungssystem BorWin2	42.167	Diele	800
NOR-6-3	29, 30	DC-Netzanbindungssystem BorWin4	42.A86	Emden/0st	900
NOR-8-1	33, 34	DC-Netzanbindungssystem BorWin3	42.A84	Emden/0st	900
0ST-3-1	_	AC-Netzanbindungssystem Baltic 1	46.195	Bentwisch	200
OST-3-2	50	AC-Netzanbindungssystem Baltic 2	46.195	Bentwisch	40014

Quelle: Übertragungsnetzbetreiber

¹⁴ Das Projekt OST-3-2 baut auf dem Projekt OST-3-1 auf. Durch diese Projekte ergibt sich damit in Summe nur eine Übertragungskapazität von 400 MW.

¹³ Die Übertragungskapazität bezieht sich auf die Netzanschlusspunkte.

Abbildung 7: Start-Offshorenetz Nordsee

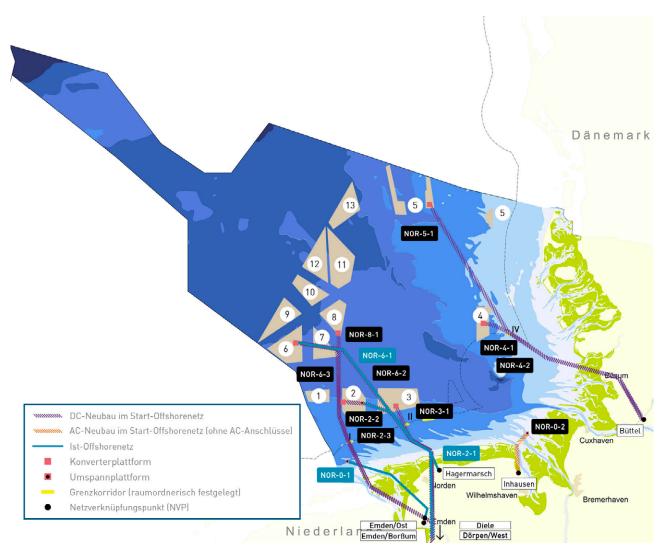
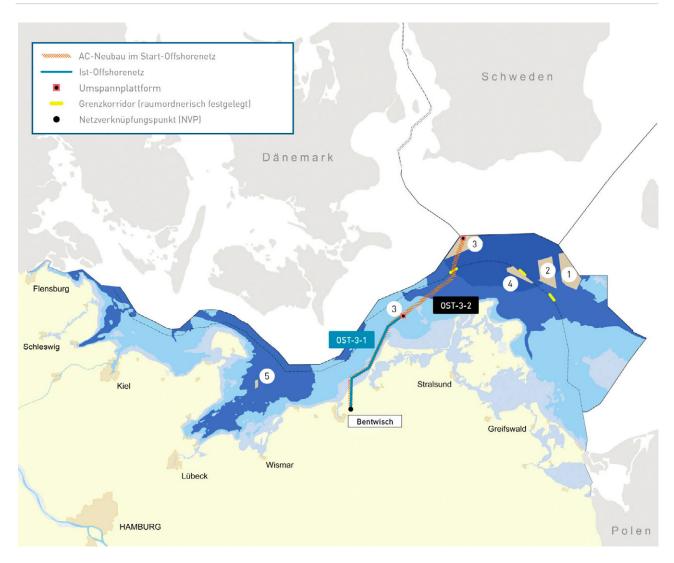
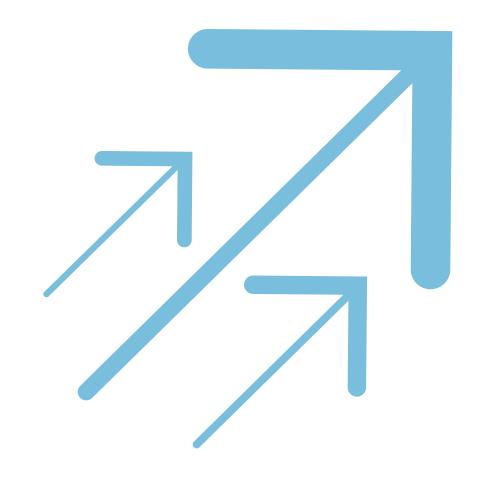




Abbildung 8: Start-Offshorenetz Ostsee

3 ERMITTLUNG DES OFFSHORE-NETZAUS-BAUBEDARFS

3 ERMITTLUNG DES OFFSHORE-NETZAUSBAUBEDARFS

Auf Grundlage des Start-Offshorenetzes, der im Bundesfachplan Offshore (BFO) definierten Cluster und der im Szenariorahmen für die einzelnen Szenarien prognostizierten installierten Erzeugungsleistung aus Offshore-Windenergie (siehe Kapitel 2), kann die Beschreibung des erforderlichen Ausbaubedarfs des Offshorenetzes erfolgen. Es gilt, diesen schrittweise, wirtschaftlich und bedarfsgerecht zu realisieren, um die Potenziale der Offshore-Windenergie optimal zu nutzen.

In Abhängigkeit von den jeweiligen Rahmenbedingungen werden die einzelnen Maßnahmen in AC- oder DC-Technologie entsprechend den technischen Planungsgrundsätzen des Bundesfachplans Offshore umgesetzt. Die Abkürzung AC steht dabei für Maßnahmen in Drehstromtechnik (Alternating current) und die Abkürzung DC bzw. HGÜ für Maßnahmen in Gleichstromtechnik (Direct current). Daraus ergeben sich jeweils andere Maßnahmenumfänge und Umsetzungsschritte. In der Nordsee werden die Netzanbindungssysteme für Offshore-Windparks (OWP) in aller Regel mit DC-Technologie ausgeführt. Dies ist auf die in Summe größere Erzeugungsleistung der Offshore-Windenergie und die zumeist auch größeren Entfernungen zum technisch und wirtschaftlich günstigsten Netzverknüpfungspunkt an Land zurückzuführen. In der Ostsee wird im Vergleich eine geringere Leistung über kürzere Entfernungen übertragen. Daher stellt hier die AC-Technologie das technisch und wirtschaftlich effizienteste Übertragungskonzept dar. Durch kleinere Einheitengrößen in der Übertragungskapazität bietet die AC-Technologie außerdem die Möglichkeit, den Offshore-Netzausbau besser auf die tatsächlich installierte Erzeugungsleistung aus Offshore-Windenergie anzupassen. Unter www.netzentwicklungsplan.de/ Zkb werden die unterschiedlichen Rahmenbedingungen und die entsprechend eingesetzten Technologien erläutert.

Der neue Rechtsrahmen im Energiewirtschaftsgesetz (EnWG) sieht für die Anbindung von Offshore-Windparks ein zweistufiges Verfahren vor. Im Rahmen der ersten Stufe stellen die anbindungsverpflichteten Übertragungsnetzbetreiber auf Grundlage des Offshore-Netzentwicklungsplans (O-NEP) windparkunspezifische Verbindungen zwischen einzelnen Clustern und Netzverknüpfungspunkten an Land her. Diese Verbindungen werden im Folgenden entsprechend der jeweils vorgesehenen Technologie als "HGÜ-Verbindungen" (Nordsee) bzw. "AC-Verbindungen" (vorwiegend Ostsee) bezeichnet.

In der zweiten Stufe erfolgt die Zuweisung der Übertragungskapazität auf einer solchen Verbindung durch die Bundesnetzagentur (BNetzA) an jeweils einen oder mehrere Offshore-Windparks. Der Anschluss von Offshore-Windparks an die HGÜ-Verbindung bzw. AC-Verbindung erfolgt dabei stets in AC-Technologie. Folglich werden sie als "AC-Anschlüsse" bezeichnet. Ein aus HGÜ-Verbindung und AC-Anschlüssen entstehendes System wird als DC-Netzanbindungssystem und ein aus AC-Verbindung und AC-Anschlüssen bestehendes System wird als AC-Netzanbindungssystem bezeichnet. Erst auf Grundlage einer konkreten Zuweisung von Übertragungskapazität auf einer Verbindung an Offshore-Windparks durch die BNetzA kann der genaue Umfang des jeweiligen Netzanbindungssystems projektspezifisch ausgewiesen werden. In der Ostsee kann die Netzanbindung der Offshore-Windparks dabei sowohl direkt als auch über "Verbindungen untereinander", bei der die Mitnutzung der Offshore-Umspannplattform eines primär angeschlossenen Offshore-Windparks erforderlich ist, erfolgen. In den nachfolgenden Maßnahmen-Tabellen werden aus diesem Grund nur die windparkunspezifischen Verbindungen ausgewiesen. Für den Anschluss von Offshore-Windparks sind in jedem Fall AC-Anschlüsse erforderlich und werden im Rahmen der Kalkulation des jeweiligen Investitionsvolumens pauschaliert berücksichtigt.

Berücksichtigung von Planungs-, Zulassungs- und Errichtungszeiten sowie von am Markt verfügbaren Errichtungskapazitäten

Auf Basis der Erfahrungen bei aktuell in Realisierung befindlichen Netzanbindungssystemen und der bei den letzten Vergabeverfahren am Markt verfügbaren Errichtungskapazitäten setzen die Übertragungsnetzbetreiber die Dauer des Vergabeverfahrens für eine Netzanbindung mit durchschnittlich zwölf Monaten an. Für die Errichtung eines DC-Netzanbindungssystems wird im O-NEP derzeit von 60 Monaten ausgegangen, für AC-Netzanbindungssysteme von 42 Monaten. Die Erkenntnisse über die Ausgestaltung der zukünftigen Netzanbindungssysteme, Kabeltrassen und Offshore-Plattformstandorte sind nicht hinreichend gefestigt, um eine Abschätzung der Entwicklung von Realisierungszeiträumen zu erreichen, die schon heute genügend belastbar ist.

Weiterhin werden für die Errichtung von Offshore-Netzanbindungen Ressourcen wie AC- und DC-Netzanbindungssysteme, Kabelverlegeequipment, Spezialschiffe, Stahlbauten und besonders geschultes Personal benötigt, die nur begrenzt zur Verfügung stehen. Ressourcenengpässe wirken sich unmittelbar auf die von den Herstellern angebotenen Realisierungszeiten der Netzanbindungssysteme aus. Eine Berücksichtigung von in Zukunft mutmaßlich kürzeren Realisierungszeiträumen auf Basis von Prognosen ist aus Sicht der Übertragungsnetzbetreiber zum jetzigen Zeitpunkt noch nicht praktikabel.

3.1 Zeitliche Staffelung der Offshore-Netzausbaumaßnahmen

Die im Szenariorahmen definierten Erzeugungsleistungen stellen das Ergebnis eines zehnjährigen Entwicklungspfades im Zieljahr 2024 dar. Die Netzanbindungssysteme werden jedoch nach und nach benötigt. Um eine rechtzeitige Planung und Realisierung der Netzanbindungssysteme sowie eine Synchronisierung mit der Errichtung der Offshore-Windparks in den einzelnen Clustern (siehe Kapitel 2.1) zu ermöglichen, muss eine zeitliche Ausbauplanung des Offshorenetzes innerhalb des Betrachtungszeitraumes vorgenommen werden. Hierzu wurden im Rahmen des 0-NEP 2013 im Dialog mit der Bundesnetzagentur und den Konsultationsteilnehmern objektive Kriterien zur zeitlichen Staffelung der Umsetzung der Offshore-Netzausbaumaßnahmen entwickelt.

Die zeitliche Staffelung der erforderlichen Maßnahmen erfolgt durch die sequenzielle Anwendung von vier Kriterien.

- Kriterium 1: Küstenentfernung
- Kriterium 2: Erzeugungspotenzial
- Kriterium 3: Geplante Inbetriebnahme der Netzverknüpfungspunkte
- Kriterium 4: Realisierungsfortschritt der anzubindenden Offshore-Windparks

Die Kriterien werden nachfolgend erläutert und ihre Anwendung wird einmal exemplarisch anhand des Szenarios B 2024 beschrieben. Eine ausführliche Herleitung und Diskussion der Kriterien findet sich im 0-NEP 2013*, dem dazugehörigen Bestätigungsdokument der BNetzA und in den unter www.netzentwicklungsplan.de veröffentlichten Konsultationsbeiträgen.

Kriterium 1 "Küstenentfernung"

Es besteht eine direkte Abhängigkeit zwischen der Küstenentfernung der anzubindenden Cluster und den erforderlichen Investitionen für die Netzanbindung: Je länger die See- und Landkabelverbindung zwischen Cluster und Küste bzw. Netzverknüpfungspunkt ist, desto höher liegen die erforderlichen Investitionen zur Herstellung der Netzanbindung. Im Sinne eines effizienten Offshore-Netzausbaus werden küstennahe Cluster zuerst erschlossen. Bei der Beurteilung von Clustern im Hinblick auf ihre Küstenentfernung kann nicht direkt auf die Länge der kürzesten Verbindung zum Festland ("Luftlinie") Bezug genommen werden. Bei der Planung einer Trasse zur Netzanbindung von Offshore-Windparks sind, wie auch an Land, Festlegungen der Raumordnung und andere Belange (z. B. Schifffahrt, Rohstoffgewinnung, Naturschutz) zu berücksichtigen. Sie können dazu führen, dass sich die Längen der Netzanbindungen von zwei Clustern, die vergleichbar weit vom Festland entfernt liegen, tatsächlich um einige Kilometer unterscheiden. Zur sinnvollen Staffelung der Netzanbindungssysteme anhand des Kriteriums der Küstenentfernung wird für die Bereiche der Nord- und Ostsee eine Aufteilung in Entfernungszonen vorgenommen. Die Zonen weisen eine räumliche Tiefe von etwa 50 bis 100 km auf. Innerhalb einer Zone werden alle Netzanbindungen hinsichtlich des Kriteriums der Küstenentfernung gleichrangig behandelt. Die Nordsee wird in fünf Entfernungszonen eingeteilt (siehe Abbildung 9). Die räumliche Tiefe der Zone 1 in der Nord- und Ostsee liegt dergestalt miteinander im Einklang, dass bei Übertragung der räumlichen Ausdehnung der Zone 1 der Nordsee die gesamte Fläche des Küstenmeers und der ausschließlichen Wirtschaftszone (AWZ) der Ostsee abgedeckt wird. Im Ergebnis liegen damit das Küstenmeer und die deutsche AWZ der Ostsee vollständig in der Entfernungszone 1 (siehe Abbildung 10).

^{*}http://www.netzentwicklungsplan.de/content/materialien

Abbildung 9: Deutsche Nordsee mit Entfernungszonen

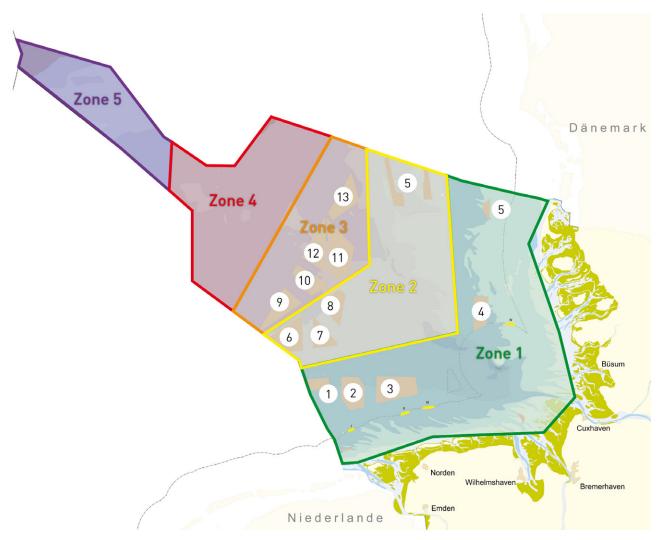
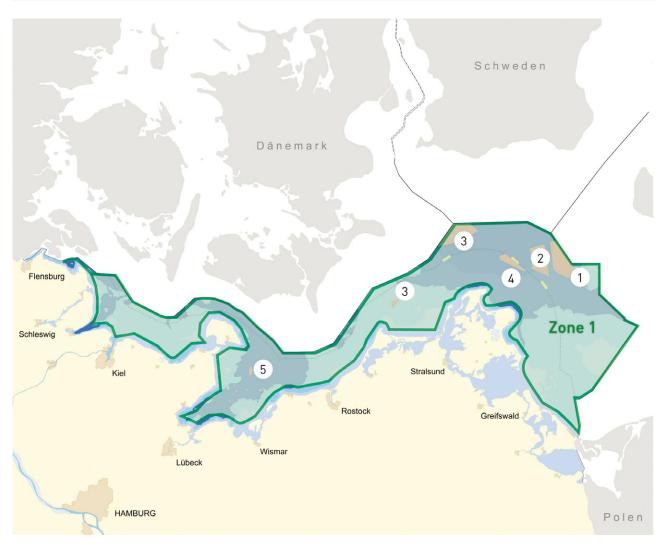



Abbildung 10: Deutsche Ostsee mit Entfernungszonen

Kriterium 2 "Erzeugungspotenzial"

Je höher das Erzeugungspotenzial eines Clusters ist, desto größer ist die Wahrscheinlichkeit, dass die Netzanbindung optimal ausgelastet wird, auch wenn es zu Änderungen oder Verzögerungen bei einzelnen Offshore-Windpark-Projekten kommen sollte. Um eine möglichst effiziente Nutzung der Übertragungskapazität zu erreichen, werden Netzanbindungssysteme bevorzugt dort errichtet, wo ihnen ein möglichst hohes noch zu erschließendes Erzeugungspotenzial gegenüber steht. Das Kriterium des Erzeugungspotenzials wird anhand der vom Bundesamt für Seeschifffahrt und Hydrographie im Bundesfachplan Offshore vorgenommenen Ausweisung von Clustern in der ausschließlichen Wirtschaftszone und den dort für einen Kurzfrist- und einen Langfrist-Planungshorizont angegebenen erwarteten Leistungen angewandt. Soweit sich aus den Angaben der Küsten-Bundesländer vergleichbare Vorgaben für Cluster im Küstenmeer ergeben, werden diese entsprechend berücksichtigt. Das Erzeugungspotenzial richtet sich also nach der im Bundesfachplan Offshore bzw. in der jeweiligen Landesraumordnung ausgewiesenen Fläche bzw. Leistung für jedes einzelne Cluster abzüglich der Leistung, die bereits durch Maßnahmen aus dem Start-Offshorenetz oder jeweils zeitlich vorgelagerte Maßnahmen im Rahmen der Umsetzung dieses O-NEP abtransportiert wird (siehe Tabellen 2 und 3, Kapitel 2).

Kriterium 3 "Geplante Inbetriebnahme der Netzverknüpfungspunkte"

Die Verfügbarkeit der Netzverknüpfungspunkte an Land (siehe Kapitel 2) ist notwendige Voraussetzung für die Umsetzbarkeit einer Offshore-Netzausbaumaßnahme. Ohne das entsprechende Umspannwerk an Land und freie Übertragungskapazität im Netz kann der aus den Offshore-Windparks an Land transportierte Strom nicht weitergeleitet werden. Zur angemessenen Berücksichtigung des Kriteriums "geplante Inbetriebnahme der Netzverknüpfungspunkte" genügt es, wenn die erarbeitete zeitliche Staffelung nach den oben genannten Kriterien darauf überprüft wird, ob sie mit der geplanten Inbetriebnahme der Netzanknüpfungspunkte vereinbar ist. Ist dies nicht der Fall, weil der erforderliche Netzanknüpfungspunkt oder das Netz an Land für den Zeitpunkt der geplanten Fertigstellung der Offshore-Netzausbaumaßnahme nicht den erforderlichen Ausbauzustand aufweist, so wird eine entsprechende Anpassung der zeitlichen Staffelung der Offshore-Netzausbaumaßnahmen vorgenommen.

Kriterium 4 "Realisierungsfortschritt der anzubindenden Offshore-Windparks"

Das Kriterium des "Realisierungsfortschritts der anzubindenden Offshore-Windparks" wird bei der zeitlichen Staffelung der Offshore-Netzausbaumaßnahmen durch eine Plausibilitätskontrolle geprüft. Die zeitliche Staffelung, die sich anhand der Kriterien 1, 2 und 3 ergibt, wird daraufhin geprüft, ob sie im Hinblick auf den aktuellen Planungs- und Realisierungsfortschritt bzw. die Realisierungswahrscheinlichkeit der anzubindenden Offshore-Windparks zu grob unangemessenen Ergebnissen führen würde. Gibt es bei der Aufstellung und Überarbeitung des O-NEP belastbare Anzeichen, dass die zeitliche Staffelung der Maßnahmen den aktuellen Planungs- und Realisierungsständen oder der bereits feststehenden Realisierung oder auch Nichtrealisierung einzelner Offshore-Windpark-Projekte widerspricht, so wird eine entsprechende Korrektur der zeitlichen Staffelung der Maßnahmen vorgenommen. Dies ist z. B. der Fall, wenn unbillige Härten durch den Systemwechsel vom windparkspezifischen Anbindungsregime zum neuen Regime des O-NEP entstehen.

Exemplarische Anwendung der Methodik zur zeitlichen Staffelung auf das Szenario B 2024 in der Ostsee

Gemäß dem Szenario B 2024 ist insgesamt eine installierte Erzeugungsleistung aus Offshore-Windenergie von 1.700 MW aus den Clustern der deutschen Ostsee hin zu den Netzverknüpfungspunkten an Land zu übertragen. Davon entfallen bereits 336 MW auf die beiden Startnetzprojekte OST-3-1 und OST-3-2. Für die Übertragung der verbleibenden 1.364 MW sind weitere Offshore-Netzausbaumaßnahmen erforderlich. Bei einer Übertragungsleistung von 250 MW pro AC-Netzanbindungssystem sind in der Ostsee im Szenario B damit insgesamt sechs weitere Systeme bis zum Jahr 2024 erforderlich

Im Küstenmeer und in der ausschließlichen Wirtschaftszone der Ostsee sind in Summe fünf Cluster vorhanden. Diese liegen alle in der einzigen Entfernungszone der deutschen Ostsee, der Zone 1. Die Anwendung des Kriteriums "Küstenentfernung" hat daher keinen Einfluss auf die zeitliche Staffelung der Netzanbindungssysteme in der Ostsee.

Gemäß dem zweiten Kriterium "Erzeugungspotenzial" wird im nächsten Schritt beurteilt, in welchem Cluster das noch zu erschließende Erzeugungspotenzial für Offshore-Windenergie am größten ist. Grundlage für die Beurteilung des Erzeugungspotenzials der einzelnen Cluster sind dabei die Einschätzungen durch das Bundesamt für Seeschifffahrt und Hydrographie und, im Fall der Ostsee, das Land Mecklenburg-Vorpommern. Unterschieden wird dabei zwischen Flächen (Clustern oder Teilen von Clustern) auf welchen innerhalb der nächsten etwa zehn Jahre mit einem Ausbau gerechnet werden kann (Kurzfrist-Planungshorizont) und Flächen, deren Erschließung aller Voraussicht nach erst in einem zweiten Schritt erfolgen wird (Langfrist-Planungshorizont).

Damit sind nach Tabelle 3 in Kapitel 2 für die Ostsee zunächst folgende Erzeugungspotenziale im Kurzfrist-Planungshorizont anzusetzen:

Tabelle 6: Noch zu erschließendes Potenzial im Kurzfrist-Planungshorizont für die deutsche Ostsee

Cluster-Nr.	Potenzial in MW
Cluster 1 "Westlich Adlergrund"	880 MW
Cluster 4 "Westlich Arkonasee"	350 MW

Quelle: Übertragungsnetzbetreiber

Zunächst wird aufgrund des höheren, noch zu erschließenden Erzeugungspotenzials das größere Cluster 1 mit drei Netzanbindungssystemen à 250 MW erschlossen (OST-1-1, OST-1-2, OST-1-3). Danach verbleiben 130 MW Erzeugungspotenzial in diesem Cluster. Nun weist das Cluster 4 mit 350 MW das höchste noch zu erschließende Erzeugungspotenzial im Kurzfrist-Planungshorizont auf. Das vierte System OST-4-1 würde folglich diesem Cluster zugeordnet. Danach verbleiben noch 100 MW im Cluster 4. Mit dem fünften Netzanbindungssystem würde dann erneut das Cluster 1 erschlossen werden, bevor das sechste System das Cluster 4 vollständig erschließt. Es ergibt sich folgende Staffelung aus der Anwendung des zweiten Kriteriums: OST-1-1, OST-1-2, OST-1-3, OST-4-1, OST-1-4, OST-4-2.

Da alle Netzverknüpfungspunkte im Ostseeraum bereits in Betrieb sind, ergibt sich aus dem Kriterium "Geplante Inbetriebnahme der Netzverknüpfungspunkte" keine Veränderung der zeitlichen Staffelung.

Abschließend erfolgt die Prüfung anhand des Kriteriums "Realisierungsfortschritt der anzubindenden Offshore-Windparks". Während im Cluster 1 "Westlich Adlergrund" für zwei Offshore-Windparks bereits eine Genehmigung erteilt wurde, liegt für das Cluster 4 "Westlich Arkonasee" noch keine Genehmigung für einen Offshore-Windpark vor. Aufgrund dieses deutlichen Unterschieds wird eine Anpassung der Staffelung vorgenommen: Das vierte im Kurzfrist-Planungshorizont notwendige AC-Netzanbindungssystem wird dem Cluster 1 "Westlich Adlergrund" zugeordnet. Das Erzeugungspotenzial des Clusters 1 ist dann mit vier Systemen voll erschlossen. Die verbleibenden Systeme OST-4-1 und OST-4-2 führen damit als fünftes und sechstes System in das Cluster 4 "Westlich Arkonasee". Es ergibt sich im Szenario B 2024 somit folgende Staffelung: OST-1-1, OST-1-2, OST-1-3, OST-1-4, OST-4-1, OST-4-2. Im weiteren Verlauf wird dann das Erzeugungspotenzial aus dem Langfrist-Planungshorizont (siehe Kapitel 2 – Tabelle 3: Cluster mit der jeweilig erwarteten Erzeugungsleistung – Ostsee) erschlossen.

Um den Offshore-Netzausbau zu verstetigen und das Ausbautempo bedarfsgerecht anpassen zu können, ist grundsätzlich vorgesehen, pro Jahr ein AC-Netzanbindungssystem zu vergeben. Um jedoch Verzögerungen beim Ausbau der Offshore-Windenergie entgegenzuwirken, ist in den ersten beiden Jahren (2014 und 2015) die Vergabe von insgesamt vier AC-Netzanbindungssystemen vorgesehen.

Exemplarische Anwendung der Methodik zur zeitlichen Staffelung auf das Szenario B 2024 in der Nordsee

Gemäß dem Szenario B 2024 ist insgesamt eine installierte Erzeugungsleistung aus Offshore-Windenergie von 11.000 MW zu übertragen. Davon werden bereits 8.000 MW durch Projekte des Start-Offshorenetzes erschlossen. Für die Übertragung der verbleibenden 3.000 MW im Szenario B 2024 sind weitere Offshore-Netzausbaumaßnahmen erforderlich. Die DC-Netzanbindungssysteme in der Nordsee werden gemäß der Vorgaben im Bundesfachplan Offshore mit einer Übertragungsleistung von 900 MW ausgeführt. Daraus ergibt sich, dass vier weitere Netzanbindungssysteme erforderlich sind.

Das Kriterium "Küstenentfernung" teilt die Nordsee in fünf Zonen ein. Die Cluster 0, 1, 2, 3, 4 und zu Teilen 5 liegen in der Zone 1. Davon werden die Cluster 0, 2, 4 und der sich in Zone 1 befindliche Teil von Cluster 5 bereits durch Startnetzmaßnahmen abgedeckt. Bei der weiteren Prüfung, in welche Cluster zuerst neue DC-Netzanbindungssysteme zu führen sind, sind somit zunächst die Cluster 1 und 3 zu berücksichtigen.

Grundlage für die Anwendung des Kriteriums 2 "Erzeugungspotenzial" ist die Beurteilung durch das Bundesamt für Seeschifffahrt und Hydrographie für die AWZ. Alle im Küstenmeer von Schleswig-Holstein und Niedersachsen gelegenen Cluster werden bereits durch Maßnahmen im Startnetz erschlossen. Für das Küstenmeer sind folglich keine Erzeugungspotenziale mehr zu ermitteln.

Nach Tabelle 2 in Kapitel 2 sind für die in Zone 1 noch nicht vollständig erschlossenen Cluster 1 und 3 folgende Erzeugungspotenziale für die Ermittlung der zeitlichen Staffelung zu berücksichtigen:

Tabelle 7: Noch zu erschließendes Potenzial der Zone 1 im Kurzfrist-Planungshorizont für die deutsche Nordsee

Cluster-Nr.	Potenzial in MW
Cluster 1	741 MW
Cluster 3	1.619 MW

Quelle: Übertragungsnetzbetreiber

Das noch zu erschließende Potenzial in Cluster 3 ist höher als in Cluster 1. Aus diesem Grund wird das erste DC-Netzanbindungssystem im Zubau-Offshorenetz dem Cluster 3 zugeordnet: NOR-3-3¹⁵. Danach verbleiben 719 MW Erzeugungspotenzial. Somit wird die zweite Ausbaumaßnahme NOR-1-1 in das Cluster 1 geführt und erschließt dieses vollständig. Das dritte System NOR-3-2 führt wieder ins Cluster 3.

In der als nächstes zu erschließenden Entfernungszone 2 liegen die Cluster 6, 7, 8 und teilweise 5. Durch Startnetzmaßnahmen ist das Cluster 6 vollständig und das Cluster 8 bis auf eine Restleistung in Höhe von ca. 78 MW erschlossen. Aus Gründen der Wirtschaftlichkeit wird für diese Restleistung im Bundesfachplan Offshore kein weiteres System vorgesehen. Für die zeitliche Staffelung sind in der Zone 2 somit nur noch Netzanbindungssysteme für die Cluster 5 und 7 zu berücksichtigen.

¹⁵ Im O-NEP 2013 war das System NOR-3-2 vor NOR-3-3 vorgesehen. Bei der für NOR-3-2 geplanten Trassenführung durch die Jade bestehen aufgrund der hohen Morphodynamik und Altlasten aus dem zweiten Weltkrieg noch erhebliche Unsicherheiten. Deshalb wird die Reihenfolge getauscht und im Cluster 3 das System NOR-3-3 vor NOR-3-2 realisiert.

Tabelle 8: Noch zu erschließendes Potenzial der Zone 2 im Kurzfrist-Planungshorizont für die deutsche Nordsee

Cluster-Nr.	Potenzial in MW
Cluster 5	492 MW
Cluster 7	1.356 MW

Quelle: Übertragungsnetzbetreiber

In Cluster 5 sind noch 492 MW zu erschließen, da 864 MW durch die Startnetzmaßnahme NOR-5-1 abgeführt werden. Somit wird das vierte System (NOR-7-1) aufgrund des höheren noch zu erschließenden Erzeugungspotenzials dem Cluster 7 zugeordnet. Das dann noch im Cluster 7 zu erschließende Erzeugungspotenzial von 456 MW ist geringer als das Restpotenzial in Cluster 5, sodass das fünfte System dem Cluster 5 zugeschlagen wird (NOR-5-2). Durch das nächste Netzanbindungssystem (NOR-7-2) wird das Potenzial in Cluster 7 und damit abschließend der gesamten Zone 2 vollständig erschlossen. Aus der Anwendung der Kriterien 1 und 2 ergibt sich die Staffelung NOR-3-3, NOR-1-1, NOR-3-2, NOR-7-1, NOR-5-2, NOR-7-2.

Da aus heutiger Sicht alle notwendigen Netzverknüpfungspunkte verfügbar sind, ergibt sich aus dem Kriterium "Geplante Inbetriebnahme der Netzverknüpfungspunkte" keine Veränderung.

Schließlich erfolgt die Überprüfung anhand des "Realisierungsfortschritts der anzubindenden Offshore-Windparks". Die in der bisherigen Reihenfolge vierte und fünfte Maßnahme (NOR-7-1 und NOR-5-2) führen zu Clustern mit Offshore-Windparks, die bereits einen fortgeschrittenen Realisierungsstand anhand der alten Rechtslage nachweisen konnten, während nur ein geringer Teil der Windparks, die für den Anschluss an NOR-3-3 und NOR-3-2 in Frage kommen, zum Systemwechsel eine Genehmigung hatten. Daher wird die Maßnahme NOR-3-2 bei der zeitlichen Staffelung hinter die Maßnahmen NOR-7-1 und NOR-5-2 eingeordnet. Es ergibt sich die Staffelung NOR-3-3, NOR-1-1, NOR-7-1, NOR-5-2, NOR-3-2, NOR-7-2.

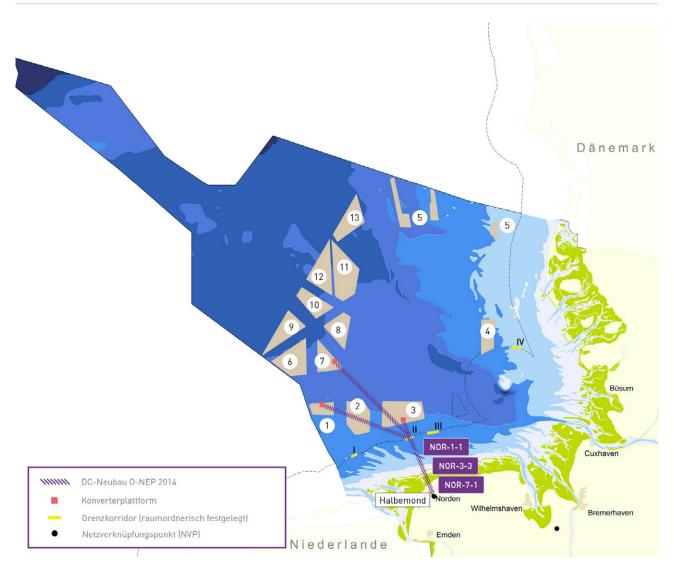
Wie eingangs festgestellt, werden für die im Szenario B 2024 für die deutsche Nordsee vorgesehene Erzeugungsleistung aus Offshore-Windenergie über das Start-Offshorenetz hinaus vier DC-Netzanbindungssysteme benötigt. Folglich sind im Szenario B 2024 nur die ersten vier Systeme der Reihe enthalten: NOR-3-3, NOR-1-1, NOR-7-1, NOR-5-2.

3.2 Offshore-Netzausbau in den Szenarien A 2024, B 2024, C 2024, B 2034

Die Offshore-Netzausbaumaßnahmen in den verschiedenen Szenarien unterscheiden sich im Wesentlichen hinsichtlich ihres Umfangs und ihrer zeitlichen Durchführung. Eine detaillierte Beschreibung der Projekte befindet sich unter www.netzentwicklungsplan.de/ONEP 2014 1 Entwurf Teil2.pdf

Die Angaben zum "Beginn der Umsetzung" gem. § 17b Abs. 2 EnWG beziehen sich im Folgenden auf das Jahr der Beauftragung der Verbindung ("Vergabe") durch den jeweils zuständigen Übertragungsnetzbetreiber. Die "geplante Inbetriebnahme" hängt unmittelbar von dem Ergebnis des jeweiligen EU-weiten Vergabeverfahrens ab.

Die für die Ostsee angegebenen geplanten Termine für den jeweiligen Beginn der Umsetzung gelten ab und einschließlich der dritten AC-Verbindung unter dem Vorbehalt, dass zuvor die Nutzung der bis dahin bereits in Auftrag gegebenen AC-Verbindungen durch Offshore-Windparks mit einer hinreichenden Realisierungswahrscheinlichkeit und entsprechend zugewiesener Netzanschlusskapazität durch die Bundesnetzagentur sichergestellt ist. Für alle nachfolgenden Maßnahmen gilt Entsprechendes.


3.2.1 Maßnahmen des Zubau-Offshorenetzes im Szenario A 2024

Das Szenario A 2024 weist im Vergleich zu den anderen Szenarien den insgesamt geringsten Offshore-Netzausbaubedarf aus. Die Gesamtlänge des Zubau-Offshorenetzes beläuft sich auf rund 1.135 km, wobei 735 km auf DC-Netzanbindungssysteme (davon 350 km HGÜ-Verbindungen und 385 km AC-Anschlüsse) in der Nordsee und 400 km auf AC-Netzanbindungssysteme (davon 340 km AC-Verbindungen und 60 km AC-Anschlüsse) in der Ostsee entfallen. Die Gesamt-Übertragungskapazität des Zubau-Offshorenetzes beträgt 3,7 GW, wobei 2,7 GW auf die Nordsee und 1 GW auf die Ostsee entfallen. Die Investitionen für die Offshore-Netzausbaumaßnahmen inklusive des Start-Offshorenetzes belaufen sich auf rund 17 Mrd. €. In der folgenden Tabelle 9 und den Abbildungen 11 und 12 sind die Projekte und Maßnahmen für das Szenario A 2024 dargestellt. Jedes Projekt ist mit einer Projektnummer versehen www.netzentwicklungsplan.de/ONEP 2014 1 Entwurf Teil2.pdf

Tabelle 9: Maßnahmen des Zubau-Offshorenetzes im Szenario A 2024

Projekt	MNummer	Bezeichnung der Maßnahme	Netzverknüpfungspunkt	geplanter Beginn der Umsetzung	geplante Inbetriebnahme
NOR-3-3	15	HGÜ-Verbindung NOR-3-3	Halbemond	2016	2021
NOR-1-1	3	HGÜ-Verbindung NOR-1-1	Halbemond	2017	2022
NOR-7-1	31	HGÜ-Verbindung NOR-7-1	Halbemond	2019	2024
0ST-1-1	51	AC-Verbindung OST-1-1 (Cluster 1 "Westlich Adlergrund")	Lubmin	2014	2017
0ST-1-2	53	AC-Verbindung OST-1-2 (Cluster 1 "Westlich Adlergrund")	Lubmin	2014	2017
0ST-1-3	55	AC-Verbindung OST-1-3 (Cluster 1 "Westlich Adlergrund")	Lubmin	2014	2018
0ST-1-4	57	AC-Verbindung OST-1-4 (Cluster 1 "Westlich Adlergrund")	Lubmin	2015	2018

Abbildung 11: Szenario A 2024 Nordsee

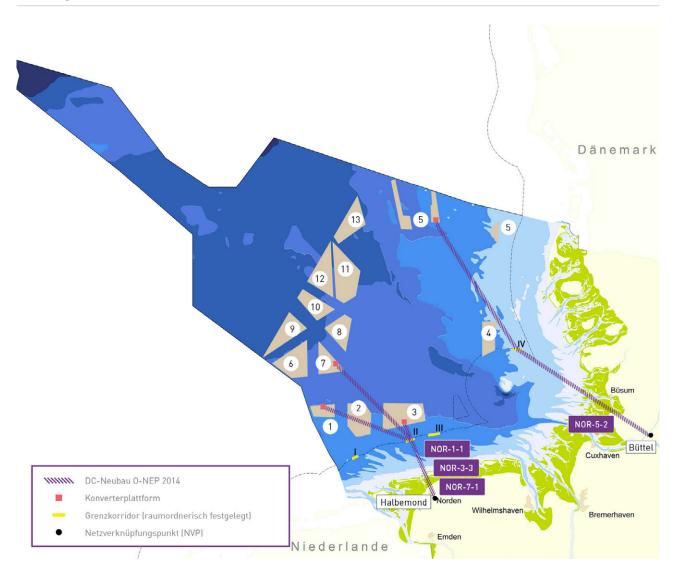
Quelle: Bundesamt für Seeschifffahrt und Hydrographie/Übertragungsnetzbetreiber

Abbildung 12: Szenario A 2024 Ostsee¹⁶

Quelle: Bundesamt für Seeschifffahrt und Hydrographie/Übertragungsnetzbetreiber

¹⁶ Die AC-Verbindungen in das Cluster 1 enden bereits an einem Bündelungspunkt an der südlichen Spitze des Clusters 2. Zur Verdeutlichung und besseren Übersicht werden sie auf dieser Karte als bis in das Cluster 1 führend dargestellt.

3.2.2 Maßnahmen des Zubau-Offshorenetzes im Szenario B 2024


Das Szenario B 2024 weist im Vergleich zu Szenario A 2024 einen höheren Offshore-Netzausbaubedarf aus. Dies ist direkt auf das gemäß bestätigtem Szenariorahmen erhöhte Erzeugungspotenzial und auf den entsprechend erhöhten Transportbedarf zurückzuführen. Die Gesamtlänge des Zubau-Offshorenetzes beläuft sich auf rund 1.605 km, wobei 1.005 km auf DC-Netzanbindungssysteme (davon 555 km HGÜ-Verbindung und 450 km AC-Anschlüsse) in der Nordsee und 600 km auf AC-Netzanbindungssysteme (davon 510 km AC-Verbindungen und 90 km AC-Anschlüsse) in der Ostsee entfallen. Die Gesamt-Übertragungskapazität des Zubau-Offshorenetzes beträgt 5,1 GW, wobei 3,6 GW auf die Nordsee und 1,5 GW auf die Ostsee entfallen. Die Investitionen für die Offshore-Netzausbaumaßnahmen inklusive des Start-Offshorenetzes belaufen sich auf rund 19 Mrd. €.

In der folgenden Tabelle 10 und den Abbildungen 13 und 14 sind die Projekte und Maßnahmen für das Szenario B 2024 dargestellt. Jedes Projekt ist mit einer Projektnummer versehen <u>www.netzentwicklungsplan.de/ONEP_2014_1_Entwurf_Teil2.pdf</u>

Tabelle 10: Maßnahmen des Zubau-Offshorenetzes im Szenario B 2024

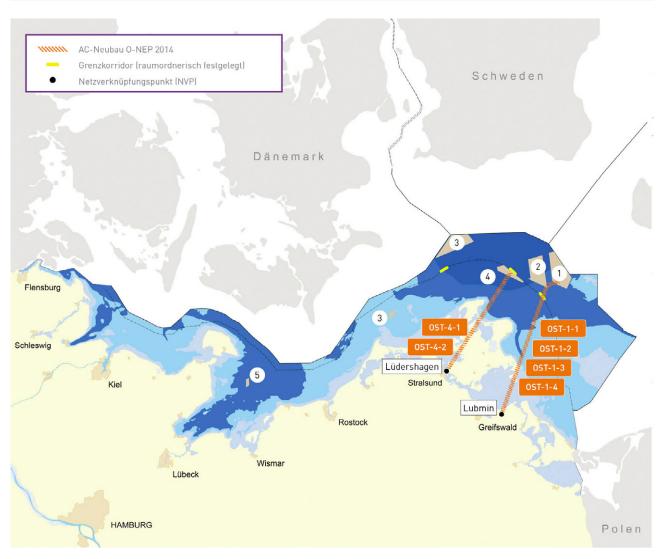

Projekt	MNummer	Bezeichnung der Maßnahme	Netzverknüpfungspunkt	geplanter Beginn der Umsetzung	geplante Inbetriebnahme
NOR-3-3	15	HGÜ-Verbindung NOR-3-3	Halbemond	2016	2021
NOR-1-1	3	HGÜ-Verbindung NOR-1-1	Halbemond	2017	2022
NOR-7-1	31	HGÜ-Verbindung NOR-7-1	Halbemond	2018	2023
NOR-5-2	25	HGÜ-Verbindung NOR-5-2	Büttel	2019	2024
0ST-1-1	51	AC-Verbindung OST-1-1 (Cluster 1 "Westlich Adlergrund")	Lubmin	2014	2017
0ST-1-2	53	AC-Verbindung OST-1-2 (Cluster 1 "Westlich Adlergrund")	Lubmin	2014	2017
0ST-1-3	55	AC-Verbindung OST-1-3 (Cluster 1 "Westlich Adlergrund")	Lubmin	2014	2018
0ST-1-4	57	AC-Verbindung OST-1-4 (Cluster 1 "Westlich Adlergrund")	Lubmin	2015	2018
0ST-4-1	81	AC-Verbindung OST-4-1 (Cluster 4 "Westlich Arkonasee")	Lüdershagen	2016	2019
0ST-4-2	83	AC-Verbindung OST-4-2 (Cluster 4 "Westlich Arkonasee")	Lüdershagen	2017	2020

Abbildung 13: Szenario B 2024 Nordsee

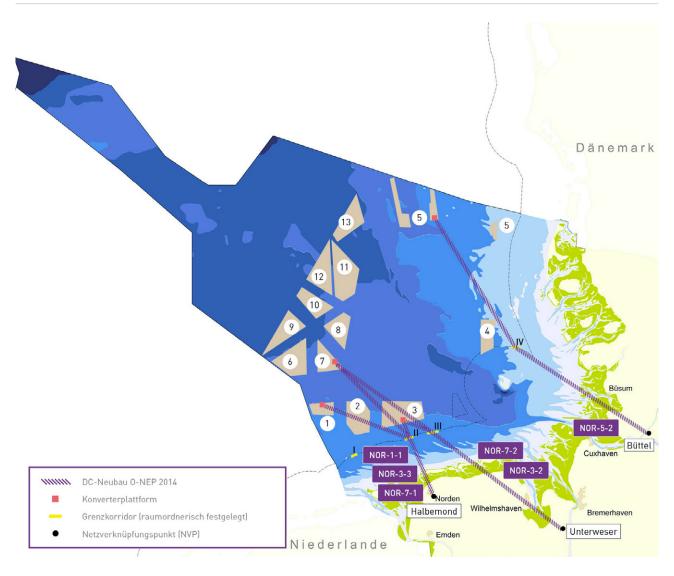
Quelle: Bundesamt für Seeschifffahrt und Hydrographie/Übertragungsnetzbetreiber

Abbildung 14: Szenario B 2024 Ostsee¹⁷

Quelle: Bundesamt für Seeschifffahrt und Hydrographie/Übertragungsnetzbetreiber

¹⁷ Die AC-Verbindungen in das Cluster 1 enden bereits an einem Bündelungspunkt an der südlichen Spitze des Clusters 2. Zur Verdeutlichung und besseren Übersicht werden sie auf dieser Karte als bis in das Cluster 1 führend dargestellt.

3.2.3 Maßnahmen des Zubau-Offshorenetzes im Szenario C 2024


Das Szenario C 2024 weist im Vergleich zu den Szenarien A 2024 und B 2024 einen höheren Netzausbaubedarf aus. Dies ist auf das gemäß bestätigtem Szenariorahmen erhöhte Erzeugungspotenzial und auf den entsprechend erhöhten Transportbedarf zurückzuführen. Die Gesamtlänge des Zubau-Offshorenetzes beläuft sich auf rund 2.540 km, wobei 1.525 km auf DC-Netzanbindungssysteme (davon 945 km HGÜ-Verbindungen und 580 km AC-Anschlüsse) in der Nordsee und 1.015 km auf AC-Netzanbindungssysteme (davon 865 km AC-Verbindungen und 150 km AC-Anschlüsse) in der Ostsee entfallen. Die Gesamt-Übertragungskapazität des Zubau-Offshorenetzes beträgt 7,9 GW, wobei 5,4 GW auf die Nordsee und 2,5 GW auf die Ostsee entfallen. Die Investitionen für die Offshore-Netzausbaumaßnahmen inklusive des Start-Offshorenetzes belaufen sich auf rund 23 Mrd. €.

In der folgenden Tabelle 11 und den Abbildungen 15 und 16 sind die Projekte und Maßnahmen für das Szenario C 2024 dargestellt. Jedes Projekt ist mit einer Projektnummer versehen <u>www.netzentwicklungsplan.de/ONEP 2014 1 Entwurf Teil2.pdf</u>

Tabelle 11: Maßnahmen des Zubau-Offshorenetzes im Szenario C 2024

Projekt	MNummer	Bezeichnung der Maßnahme	Netzverknüpfungspunkt	geplanter Beginn der Umsetzung	geplante Inbetriebnahme
NOR-3-3	15	HGÜ-Verbindung NOR-3-3	Halbemond	2016	2021
NOR-1-1	3	HGÜ-Verbindung NOR-1-1	Halbemond	2016	2021
NOR-7-1	31	HGÜ-Verbindung NOR-7-1	Halbemond	2017	2022
NOR-5-2	25	HGÜ-Verbindung NOR-5-2	Büttel	2018	2023
NOR-3-2	14	HGÜ-Verbindung NOR-3-2	Unterweser	2018	2023
NOR-7-2	32	HGÜ-Verbindung NOR-7-2	Unterweser	2019	2024
0ST-1-1	51	AC-Verbindung OST-1-1 (Cluster 1 "Westlich Adlergrund")	Lubmin	2014	2017
0ST-1-2	53	AC-Verbindung OST-1-2 (Cluster 1 "Westlich Adlergrund")	Lubmin	2014	2017
0ST-1-3	55	AC-Verbindung OST-1-3 (Cluster 1 "Westlich Adlergrund")	Lubmin	2014	2018
0ST-1-4	57	AC-Verbindung OST-1-4 (Cluster 1 "Westlich Adlergrund")	Lubmin	2015	2018
0ST-4-1	81	AC-Verbindung OST-4-1 (Cluster 4 "Westlich Arkonasee")	Lüdershagen	2016	2019
0ST-4-2	83	AC-Verbindung OST-4-2 (Cluster 4 "Westlich Arkonasee")	Lüdershagen	2017	2020
0ST-2-1	67	AC-Verbindung OST-2-1 (Cluster 2 "Arkonasee")	Lubmin	2018	2021
0ST-2-2	69	AC-Verbindung OST-2-2 (Cluster 2 "Arkonasee")	Lubmin	2019	2022
0ST-2-3	71	AC-Verbindung OST-2-3 (Cluster 2 "Arkonasee")	Lüdershagen	2020	2023
OST-1-5	59	AC-Verbindung OST-1-5 (Cluster 1 "Westlich Adlergrund")	Lubmin	2021	2024

Abbildung 15: Szenario C 2024 Nordsee

Quelle: Bundesamt für Seeschifffahrt und Hydrographie/Übertragungsnetzbetreiber

Abbildung 16: Szenario C 2024 Ostsee¹⁸

Quelle: Bundesamt für Seeschifffahrt und Hydrographie/Übertragungsnetzbetreiber

¹⁸ Die AC-Verbindungen in das Cluster 1 enden bereits an einem Bündelungspunkt an der südlichen Spitze des Clusters 2. Zur Verdeutlichung und besseren Übersicht werden sie auf dieser Karte als bis in das Cluster 1 führend dargestellt.

3.2.4 Maßnahmen des Zubau-Offshorenetzes im Szenario B 2034

Das Szenario B 2034 als Ausblick des Szenarios B 2024 weist im Vergleich zu den anderen Szenarien den insgesamt höchsten Offshore-Netzausbaubedarf aus. Dies ist direkt auf den deutlich höheren Transportbedarf im Jahr 2034 zurückzuführen. Die Gesamtlänge des Zubau-Offshorenetzes beläuft sich auf rund 6.325 km, wobei 4.265 km auf DC-Netzanbindungssysteme (davon 3.155 km auf HGÜ-Verbindungen und 1.110 km AC-Anschlüsse) in der Nordsee und 2.060 km auf AC-Netzanbindungssysteme (davon 1.760 km AC-Verbindungen und 300 km AC-Anschlüsse) in der Ostsee entfallen. Die Gesamt-Übertragungskapazität des Zubau-Offshorenetzes beträgt 17,6 GW, wobei 12,6 GW auf die Nordsee und 5 GW auf die Ostsee entfallen.

In der folgenden Tabelle 12 und den Abbildungen 17 und 18 sind die Projekte und Maßnahmen für das Szenario B 2034 dargestellt. Jedes Projekt ist mit einer Projektnummer versehen <u>www.netzentwicklungsplan.de/ONEP 2014 1 Entwurf Teil2.pdf</u>

Tabelle 12: Maßnahmen des Zubau-Offshorenetzes im Szenario B 2034¹⁹

Projekt	MNummer	Bezeichnung der Maßnahme	Netzverknüpfungspunkt	geplanter Beginn der Umsetzung	geplante Inbetriebnahme
NOR-3-3	15	HGÜ-Verbindung NOR-3-3	Halbemond	2016	2021
NOR-1-1	3	HGÜ-Verbindung NOR-1-1	Halbemond	2017	2022
NOR-7-1	31	HGÜ-Verbindung NOR-7-1	Halbemond	2018	2023
NOR-5-2	25	HGÜ-Verbindung NOR-5-2	Büttel	2019	2024
NOR-3-2	14	HGÜ-Verbindung NOR-3-2	Unterweser	2020	2025
NOR-7-2	32	HGÜ-Verbindung NOR-7-2	Unterweser	2021	2026
NOR-13-1	43	HGÜ-Verbindung NOR-13-1	Kreis Segeberg	2022	2027
NOR-11-1	39	HGÜ-Verbindung NOR-11-1	Elsfleth/West	2023	2028
NOR-12-1	41	HGÜ-Verbindung NOR-12-1	Wilhelmshaven 2	2024	2029
NOR-9-1	35	HGÜ-Verbindung NOR-9-1	Cloppenburg	2025	2030
NOR-10-1	38	HGÜ-Verbindung NOR-10-1	Cloppenburg	2026	2031
NOR-13-2	44	HGÜ-Verbindung NOR-13-2	Kreis Segeberg	2027	2032
NOR-11-2	40	HGÜ-Verbindung NOR-11-2	Wilhelmshaven 2	2028	2033
NOR-12-2	42	HGÜ-Verbindung NOR-12-2	Wilhelmshaven 2	2029	2034
0ST-1-1	51	AC-Verbindung OST-1-1 (Cluster 1 "Westlich Adlergrund")	Lubmin	2014	2017
0ST-1-2	53	AC-Verbindung OST-1-2 (Cluster 1 "Westlich Adlergrund")	Lubmin	2014	2017
0ST-1-3	55	AC-Verbindung OST-1-3 (Cluster 1 "Westlich Adlergrund")	Lubmin	2014	2018
0ST-1-4	57	AC-Verbindung OST-1-4 (Cluster 1 "Westlich Adlergrund")	Lubmin	2015	2018

¹⁹Die Projekte OST-x-1 bis OST-x-3 stellen Platzhalter für Netzanbindungssysteme in, zum jetzigen Zeitpunkt, noch nicht bekannte Cluster in der deutschen Ostsee dar. Es wird daher ebenfalls darauf verzichtet, diese Systeme in der Abbildung 18 darzustellen.

Projekt	MNummer	Bezeichnung der Maßnahme	Netzverknüpfungspunkt	geplanter Beginn der Umsetzung	geplante Inbetriebnahme
0ST-4-1	81	AC-Verbindung OST-4-1 (Cluster 4 "Westlich Arkonasee")	Lüdershagen	2016	2019
OST-4-2	83	AC-Verbindung OST-4-2 (Cluster 4 "Westlich Arkonasee")	Lüdershagen	2017	2020
OST-2-1	67	AC-Verbindung OST-2-1 (Cluster 2 "Arkonasee")	Lubmin	2018	2021
OST-2-2	69	AC-Verbindung OST-2-2 (Cluster 2 "Arkonasee")	Lubmin	2019	2022
OST-2-3	71	AC-Verbindung OST-2-3 (Cluster 2 "Arkonasee")	Lüdershagen	2020	2023
OST-1-5	59	AC-Verbindung OST-1-5 (Cluster 1 "Westlich Adlergrund")	Lubmin	2021	2024
OST-2-4	73	AC-Verbindung OST-2-4 (Cluster 2 "Arkonasee")	Lüdershagen	2022	2025
OST-3-3	89	AC-Verbindung OST-3-3 (Cluster 3 "Kriegers Flak") ²⁰	Bentwisch oder Lüdershagen	2023	2026
OST-1-6	61	AC-Verbindung OST-1-6 (Cluster 1 "Westlich Adlergrund")	Lubmin	2024	2027
OST-2-5	75	AC-Verbindung OST-2-5 (Cluster 2 "Arkonasee")	Lüdershagen	2025	2028
OST-5-1	85	AC-Verbindung OST-5-1 (Cluster 5)	Bentwisch	2026	2029
OST-3-4	91	AC-Verbindung OST-3-4 (Cluster 3 "Kriegers Flak") ²⁰	Bentwisch oder Lüdershagen	2027	2030
OST-1-7	63	AC-Verbindung OST-1-7 (Cluster 1 "Westlich Adlergrund")	Lubmin	2028	2031
OST-x-1		AC-Verbindung in ein noch nicht bekanntes Cluster ²¹	Bentwisch	2029	2032
OST-x-2		AC-Verbindung in ein noch nicht bekanntes Cluster ²¹	Bentwisch	2030	2033
OST-x-3		AC-Verbindung in ein noch nicht bekanntes Cluster ²¹	Lüdershagen	2031	2034

²¹ Die Projekte OST-x-1 bis OST-x-3 stellen Platzhalter für Netzanbindungssysteme in, zum jetzigen Zeitpunkt, noch nicht bekannte Cluster in der deutschen Ostsee dar. Es wird daher ebenfalls darauf verzichtet, diese Systeme in der Abbildung 18 darzustellen.

²⁰ Der NVP für die Projekte OST-3-3 und OST-3-4 steht noch nicht fest. Auf eine Darstellung in der Abbildung 18: Szenario B 2034 Ostsee wird daher verzichtet. Für die Berechnungen im Netzentwicklungsplan Strom 2014 wird zunächst angenommen, dass sich die installierte Erzeugungsleistung aus Offshore-Windenergie gleichmäßig auf die NVP Bentwisch und Lüdershagen verteilt.

Abbildung 17: Szenario B 2034 Nordsee

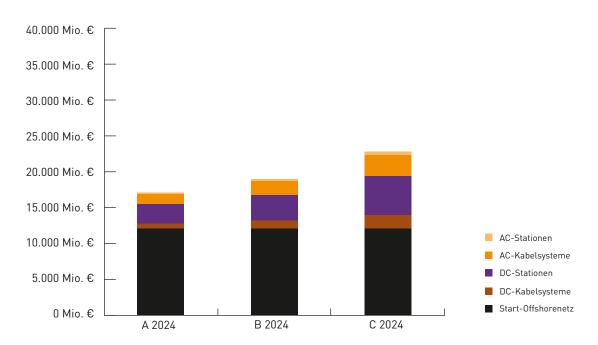


Abbildung 18: Szenario B 2034 Ostsee²²

Quelle: Übertragungsnetzbetreiber

3.3 Investitionsvolumen des Offshore-Netzausbaus

Die im Rahmen des O-NEP vorgeschlagenen Maßnahmen für einen bedarfsgerechten Offshore-Netzausbau werden von der Bundesnetzagentur unter anderem auch auf ihre Wirtschaftlichkeit und Kosteneffizienz geprüft. Bei allen im Folgenden dokumentierten Investitionsplanungen handelt es sich für das Zubau-Offshorenetz um Hochrechnungen auf Basis gegenwärtiger Personal-, Material- und Logistikkosten.


Für die drei Szenarien A, B und C 2024 variiert das geschätzte Investitionsvolumen für das deutsche Offshorenetz bis 2024 zwischen rund 17 und 23 Mrd. €. Die Investitionen in das Start-Offshorenetz (rund 12 Mrd. €) sind hier bereits berücksichtigt.

²² Die AC-Verbindungen in das Cluster 1 enden bereits an einem Bündelungspunkt an der südlichen Spitze des Clusters 2. Zur Verdeutlichung und besseren Übersicht werden sie auf dieser Karte als bis in das Cluster 1 führend dargestellt.

Für die Maßnahmen des Start-Offshorenetzes (siehe Kapitel 2, Tabelle 5) wird für die Kalkulation der Investitionsmaßnahmenantrag bei der BNetzA zugrundegelegt. An einzelnen HGÜ-Verbindungen des Start-Offshorenetzes wurde die verfügbare Übertragungskapazität noch nicht vollständig an Offshore-Windparks zugewiesen. Durch zukünftige Zuweisungen auf diesen HGÜ-Verbindungen werden zusätzliche AC-Anschlüsse erforderlich. Diese sind zum jetzigen Zeitpunkt Bestandteil des Zubau-Offshorenetzes und werden dort entsprechend kalkulatorisch berücksichtigt.

Die geschätzten Ausgaben für Investitionsmaßnahmen werden stark durch die in Abbildung 19 dargestellten Risiken beeinflusst. Zukünftig ist von einem Einsparungspotenzial durch Standardisierung und Erfahrungsaufbau auszugehen. Zum jetzigen Zeitpunkt ist dies allerdings nicht abschätzbar. Solche Lerneffekte werden ggfs. bei der jährlichen Überarbeitung des O-NEP berücksichtigt.

Abbildung 19: Schätzung des Investitionsvolumens in Abhängigkeit der Szenarien

Quelle: Übertragungsnetzbetreiber

Die Einzelkosten für ein DC-Netzanbindungssystem, welches u. a. die AC-Anschlüsse, eine Konverterplattform auf See, ein DC-Kabelsystem und eine Konverterstation an Land umfasst, sind der Tabelle 13 zu entnehmen. DC-Netzanbindungssysteme kommen derzeit nur in der Nordsee zum Einsatz.

Tabelle 13: Schätzung der Anschaffungs- und Herstellungskosten pro Anlagenteil eines DC-Netzanbindungssystems im Zubau-Offshorenetz in der Nordsee

Anlage/Anlagenteil	AHK*	Einheit	Bemerkung
Neubau DC-Kabelsysteme	2,0	Mio. €/km	pauschal inkl. Kosten für Lieferung, Verlegung und Trassenplanung im Rahmen des Genehmigungsverfahrens
Neubau AC-Kabelsysteme 155 kV	1,5	Mio. €/km	pauschal inkl. Kosten für Lieferung und Verlegung
DC-Stationen	1,0	Mio. €/MW	pauschal für See- und Landstation gemeinsam, inkl. Kosten für die Nebenanlagen

^{*}Anschaffungs- und Herstellungskosten

Quelle: Übertragungsnetzbetreiber

Hinweis: Alle Offshore-Netzausbaumaßnahmen wurden in Kabeltechnik kalkuliert.

Die Einzelkosten für die Komponenten eines AC-Netzanbindungssystems, welches das AC-Kabelsystem zwischen dem Netzanschlusspunkt und dem Netzverknüpfungspunkt sowie die Anlagen am Netzanschlusspunkt und Netzverknüpfungspunkt umfasst, sind in der Tabelle 14 zu finden. Die AC-Netzanbindungssysteme kommen bei den Maßnahmen des Zubau-Offshorenetzes nur in der Ostsee zum Einsatz.

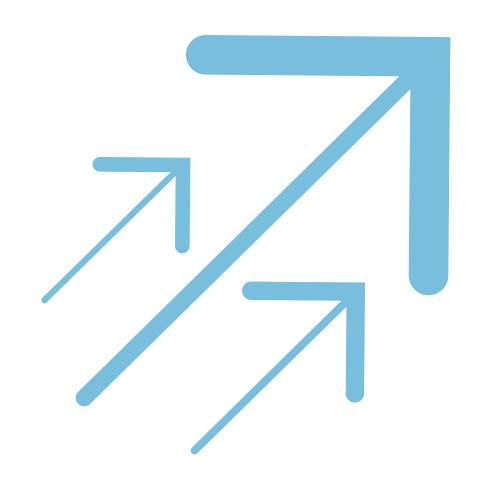
Tabelle 14: Schätzung der Anschaffungs- und Herstellungskosten pro Anlagenteil eines AC-Netzanbindungssystems im Zubau-Offshorenetz in der Ostsee

Anlage/Anlagenteil	AHK*	Einheit	Bemerkung
Neubau AC-Kabelsysteme 220 kV	2,0	Mio. €/km	pauschal inkl. Kosten für Lieferung, Verlegung und Trassenplanung im Rahmen des Genehmigungsverfahrens
AC-Stationen/Übertragungsnetz- betreiber-Anteil	0,2	Mio. €/MW	pauschal für See- und Landstation gemeinsam, inkl. Kosten für die Nebenanlagen

^{*}Anschaffungs- und Herstellungskosten

Quelle: Übertragungsnetzbetreiber

Hinweis: Alle Offshore-Netzausbaumaßnahmen wurden in Kabeltechnik kalkuliert.


Im Gegensatz zu den AC-Netzanbindungssystemen in der Ostsee handelt es sich bei den AC-Anschlüssen in der Nordsee nur um Verbindungen zwischen der Konverterplattform und der Umspannplattform des Offshore-Windparks. Diese AC-Anschlüsse werden im tiefen Wasser in der AWZ gebaut. Kostenintensive Verlegung im küstennahen, umweltfachlich besonders sensiblen Flachwasserbereich mit besonderen Verlegegeräten ist hier nicht erforderlich. Die Unterschiede bei den durchschnittlichen Anschaffungs- und Herstellungskosten für das Neubau-AC-Kabelsystem in der Nord- und Ostsee sind im Wesentlichen auf diesen Umstand zurückzuführen.

Die Errichtung von Offshore-Netzanbindungssystemen stellt an alle Beteiligten hohe Anforderungen. Daher können sich erhebliche Risiken in Bezug auf die Einhaltung der abgeschätzten Anschaffungs- und Herstellungskosten ergeben. Unter anderem sind folgende Risiken (Abbildung 20) zu berücksichtigen, die sich aufgrund der örtlichen und rechtlichen Rahmenbedingungen unterschiedlich stark in den Investitionsmaßnahmen ausprägen.

Abbildung 20: Mögliche Risiken bei der Errichtung von Offshore-Netzanbindungen

	Transport und Installation der Plattform
	Verkürzungen von Arbeitszeiten
Schlechtwetter	Standby-Zeiten
	Bauzeitenfenster
	Wellen, Wind, Eis, Salz etc.
	unvorhergesehene Bodenverhältnisse (Verdichtung)
	Einspülhindernisse (Morphologie)
	Altlasten/archäologische Funde (Munition, Wracks)
Trassenverlauf	 schwierige Bodenverhältnisse (Weichsedimente/Schlick, Mergel)
	 Rockdumping
	Steinfeldberäumung
	zusätzliches Trenchen
	Einsprüche aus privatrechtlichen und öffentlichen Belangen
	enge Bauzeitfenster im Wattenmeer
rechtliche Risiken/Genehmigungen	Auflagen für zu verwendende technische Geräte
	Genehmigungszeiträume/-umfang
	Rohstoffe (Metallpreisschwankungen; Preisschwankungen von Treib- und Schmierstoffen)
M. Let a	Preisentwicklung (Wechselkursschwankungen)
Marktrisiken	 Anbietermarkt (geringe Anzahl von Lieferanten; Entwicklung von Lieferanten aufgrund Technologie schwierig)

4 STAND DER UMSETZUNG

4 STAND DER UMSETZUNG

Erstmalig im Offshore-Netzentwicklungsplan (O-NEP) 2014 informieren die Übertragungsnetzbetreiber über den Stand der Umsetzung der im vorhergehenden O-NEP bestätigten Maßnahmen. Dieses Verfahren wird gemäß § 17b Abs. 2 S. 5 EnWG in den Folgejahren fortgesetzt.

Der Stand der Umsetzung einer Maßnahme wird mithilfe der folgenden Kategorien dokumentiert²³:

- 1: Vorbereitung der Genehmigungsverfahren
- 2: Genehmigungsverfahren begonnen
- 3: Projekt befindet sich im Vergabeprozess
- 4: Projekt befindet sich in Bauvorbereitung oder im Bau (Beginn der Umsetzung gem. § 17b Abs. 2 EnWG erfolgt)
- 5: Projekt wurde realisiert

Tabelle 15: Stand der Umsetzung von im O-NEP 2013 bestätigten Projekten und Projekten des Start-Offshorenetzes

Projekt	Bezeichnung der Projekts	Netzverknüpfungspunkt	geplante Inbetriebnahme ²⁴	Stand der Umsetzung
NOR-0-1	AC-Netzanbindungssystem Riffgat	Emden/Borßum	2014 in Betrieb genommen	5
NOR-0-2	AC-Netzanbindungssystem Nordergründe	Inhausen	2016	4
NOR-1-1	DC-Netzanbindungssystem NOR-1-1	Cloppenburg ²⁵	2021 ²⁶	1
NOR-2-1	AC-Netzanbindungssystem alpha ventus	Hagermarsch	In Betrieb	5
NOR-2-2	DC-Netzanbindungssystem DolWin1	Dörpen/West	2014	4
NOR-2-3	DC-Netzanbindungssystem DolWin3	Dörpen/West	2017	4
NOR-3-1	DC-Netzanbindungssystem DolWin2	Dörpen/West	2015	4
NOR-3-3	DC-Netzanbindungssystem NOR-3-3	Halbemond	2020 ²⁶	1
NOR-4-1	DC-Netzanbindungssystem HelWin1	Büttel	2014	4
NOR-4-2	DC-Netzanbindungssystem HelWin2	Büttel	2015	4
NOR-5-1	DC-Netzanbindungssystem SylWin1	Büttel	2015 ²⁷	4
NOR-5-2	DC-Netzanbindungssystem NOR-5-2	Büttel	202326	2

²³ Die in Ziffern 1 und 2 genannten Schritte (Vorbereitung und Durchführung der Genehmigungsverfahren) werden hier ausgeführt, ohne dass die Übertragungsnetzbetreiber hierzu nach § 17b Abs. 2 S. 5 EnWG verpflichtet sind. Die Kriterien zur Darstellung des Standes der Umsetzung nach § 17b Abs. 2 S. 5 EnWG weichen gegenüber den Kriterien des Standes der Umsetzung beim Netzentwicklungsplan Strom nach § 12b Abs. 1 S. 3 Nr. 4 EnWG ab. Dies ist der Tatsache geschuldet, dass die Abfolge zwischen genehmigungsplanerischen und netzplanerischen Instrumenten unterschiedlich ist. So ist beim 0-NEP der Bundesfachplan Offshore nach § 17a EnWG der eigentlichen Erstellung des 0-NEP vorgelagert und daher systematisch nicht als Umsetzung entsprechend des 0-NEP gemäß §§ 17b Abs. 2 S. 5, 17d Abs. 1 S. 1 EnWG angelegt.

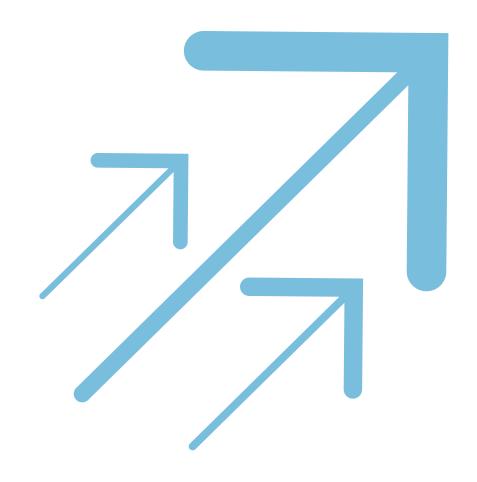
²⁴ Bei DC-Netzanbindungssystemen bezieht sich der Inbetriebnahme-Termin auf die Inbetriebnahme der HGÜ-Verbindung.

²⁵ Netzverknüpfungspunkt gemäß letztem von der BNetzA bestätigtem 0-NEP, in diesem 0-NEP abweichend vorgeschlagen.

²⁶Termin gemäß letztem von der BNetzA bestätigtem O-NEP, in diesem O-NEP ggf. abweichend vorgeschlagen.

²⁷ Verschiebung aufgrund des Projektverlaufs.

4 Stand der Umsetzung


Projekt	Bezeichnung der Projekts	Netzverknüpfungspunkt	geplante Inbetriebnahme ²⁸	Stand der Umsetzung
NOR-6-1	DC-Netzanbindungssystem BorWin1	Diele	in Betrieb	5
NOR-6-2	DC-Netzanbindungssystem BorWin2	Diele	2015	4
NOR-6-3	DC-Netzanbindungssystem BorWin4	Emden/0st	2019	3 ²⁹
NOR-7-1	DC-Netzanbindungssystem NOR-7-1	Unterweser ³⁰	2022 ³¹	1
NOR-8-1	DC-Netzanbindungssystem BorWin3	Emden/0st	2019 ³²	3 ²⁹
0ST-3-1	AC-Netzanbindungssystem Baltic 1	Bentwisch	in Betrieb	5
OST-3-2	AC-Netzanbindungssystem Baltic 2	Bentwisch	2014	4
0ST-1-1	AC-Netzanbindungssystem OST-1-1 (Cluster 1 "Westlich Adlergrund")	Lubmin	2017	3
OST-1-2	AC-Netzanbindungssystem OST-1-2 (Cluster 1 "Westlich Adlergrund")	Lubmin	2017	3
0ST-1-3	AC-Netzanbindungssystem 0ST-1-3 (Cluster 1 "Westlich Adlergrund")	Lubmin	2018	3
0ST-1-4	AC-Netzanbindungssystem OST-1-4 (Cluster 1 "Westlich Adlergrund")	Lubmin	2018	3

²⁸ Bei DC-Netzanbindungssystemen bezieht sich der Inbetriebnahme-Termin auf die Inbetriebnahme der HGÜ-Verbindung. ²⁹ Aufgrund besonderer Gegebenheiten am Netzverknüpfungspunkt Emden/Ost werden dort bereits Baumaßnahmen vor Vergabe des Netzanbindungs-

³⁰ Netzverknüpfungspunkt gemäß letztem von der BNetzA bestätigtem O-NEP, in diesem O-NEP abweichend vorgeschlagen. ³¹ Termin gemäß letztem von der BNetzA bestätigtem O-NEP, in diesem O-NEP ggf. abweichend vorgeschlagen.

³²Verschiebung aufgrund des Ausschreibungsverlaufs.

5 KONSULTATION

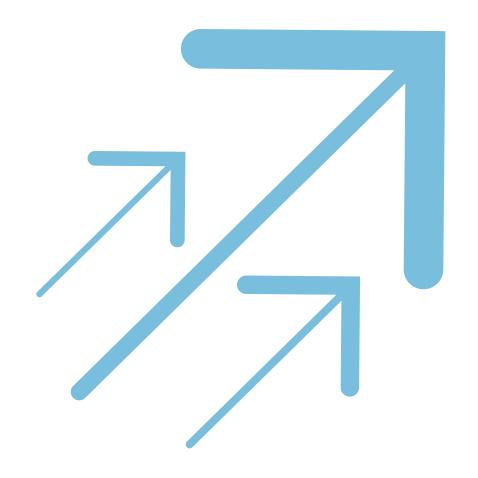
5 KONSULTATION

Die Übertragungsnetzbetreiber stellen mit dem vorliegenden Entwurf des Offshore-Netzentwicklungsplans (O-NEP) die gewählten Verfahren und die genutzten Daten sowie die daraus abgeleiteten Maßnahmen zum bedarfsgerechten Ausbau des Offshorenetzes der Öffentlichkeit zur Verfügung. Der vorliegende Plan bildet dabei nicht das einzig mögliche Modell ab, sondern stellt eine Lösung dar, die den Anforderungen des Szenariorahmens unter Berücksichtigung der Rahmenbedingungen effizient gerecht wird.

Die Konsultation ist ein wichtiges Instrument, um eine aktive gesellschaftliche Beteiligung zu ermöglichen. Um den zur Konsultation stehenden Netzentwicklungsplan inhaltlich nicht zu überfrachten und im Sinne der Transparenz des Gesamtprozesses eine bessere Lesbarkeit und Verständlichkeit zu erreichen, wurden im Offshore-Netzentwicklungsplan 2014 Zusatzinformationen zur inhaltlichen Vertiefung auf die Netzentwicklungsplan-Website www.netzentwicklungsplan.de ausgelagert. Hierbei ist zu berücksichtigen, dass nicht alle per Link aufrufbaren Dokumente notwendigerweise Teil des Offshore-Netzentwicklungsplans und damit einer Konsultation zugänglich sind. Alle Verlinkungen, die auf Projektmaßnahmen verweisen, sind zum O-NEP gehörende und damit konsultationsfähige Dokumente. Dokumente, die der weitergehenden Information und Vertiefung eines Themas dienen, sind rein informatorisch und nicht Teil der Konsultation. Die Übertragungsnetzbetreiber bitten daher davon abzusehen, sich in der Konsultation zum Offshore-Netzentwicklungsplan 2014 zu diesen speziellen Fachdokumenten zu äußern.

Die Konsultation des O-NEP findet parallel zur Konsultation des Netzentwicklungsplans Strom (NEP) in der Zeit vom 16.04.2014 zum 28.05.2014 statt. In diesem Zeitraum haben alle Interessierten die Gelegenheit, sich schriftlich zu den beiden Netzentwicklungsplänen zu äußern. Die Übertragungsnetzbetreiber laden zur Teilnahme an der Konsultation ein und freuen sich über eine rege Beteiligung.

Wie funktioniert die Teilnahme an der Konsultation?


Sie können Ihre Stellungnahme entweder online über die Eingabe in eine Konsultationsmaske auf www.netzentwicklungsplan.de, per E-Mail an konsultation@netzentwicklungsplan.de oder auf postalischem Wege abgeben. Die Anschrift lautet: Netzentwicklungsplan Strom, Postfach 10 05 72, 10565 Berlin.

In der Stellungnahme ist kenntlich zu machen, auf welchen Plan (O-NEP oder NEP) sich Ihre Stellungnahme bezieht. Es sollte keine gemeinsame Stellungnahme zu beiden Plänen erfolgen. Falls Sie mit der Veröffentlichung Ihrer Stellungnahme auf <u>www.netzentwicklungsplan.de</u> einverstanden sind, teilen Sie uns dies bitte ausdrücklich mit.

Alle eingehenden Stellungnahmen werden durch die Übertragungsnetzbetreiber ausgewertet und dokumentiert. Sie werden nicht individuell durch alle Übertragungsnetzbetreiber beantwortet, sondern angemessen in den zweiten überarbeiteten Entwurf des O-NEP eingearbeitet. Dazu werden die Übertragungsnetzbetreiber am Anfang eines jeden Kapitels sowie generell in einer zusammenfassenden Erklärung an dieser Stelle darlegen, in welcher Form die Stellungnahmen in den O-NEP eingeflossen sind. Nach Abschluss der Konsultation werden alle sachlichen Stellungnahmen, für die eine Einverständniserklärung zur Veröffentlichung vorliegt, sukzessive auf www.netzentwicklungsplan.de veröffentlicht.

Zusammen mit den Ergebnissen aus der vorgelagerten Konsultation zum Szenariorahmen sowie der nachgelagerten Konsultation durch die Bundesnetzagentur wird so kontinuierlich die Expertise aus Gesellschaft, Politik, Wissenschaft und Wirtschaft Eingang in den O-NEP finden und die Perspektive der Übertragungsnetzbetreiber ergänzen. Diese Form der Berücksichtigung verschiedener Sichtweisen erhöht die Qualität des O-NEP und ist nach Ansicht der Übertragungsnetzbetreiber ein gutes Mittel, um ein besseres Verständnis und eine breite Akzeptanz für die notwendigen Ausbaumaßnahmen zu erreichen. Auf www.netzentwicklungsplan.de finden Sie aktuelle Informationen zu den Veranstaltungen der Übertragungsnetzbetreiber.

6 FAZIT

6 FAZIT

Die vier deutschen Übertragungsnetzbetreiber 50Hertz, Amprion, TenneT und TransnetBW stellen mit diesem Offshore-Netzentwicklungsplan 2014 bereits den zweiten Offshore-Netzentwicklungsplan zur öffentlichen Konsultation. Der Offshore-Netzentwicklungsplan stellt den in den nächsten zehn beziehungsweise 20 Jahren erforderlichen Ausbau des Offshorenetzes dar. Im Zusammenspiel mit dem Netzentwicklungsplan Strom zeigt der Offshore-Netzentwicklungsplan, wie der Umbau der Erzeugungslandschaft in Deutschland und die Integration erneuerbarer Energien gelingen kann.

Prozess und Methodik

Indem Annahmen zur Erzeugungs- und Verbrauchsstruktur, die verwendete Berechnungsmethode und der daraus resultierende Netzausbaubedarf offen dargestellt werden, wird der Prozess der Netzentwicklungsplanung transparent. So ist der am 30.08.2013 von der Bundesnetzagentur bestätigte Szenariorahmen der Ausgangspunkt für die Erstellung des Netzentwicklungsplans Strom sowie des Offshore-Netzentwicklungsplans (nach § 12b EnWG und § 17b EnWG) hinsichtlich zukünftig angenommener Erzeugungskapazitäten und der Verbrauchssituation.

Der Offshore-Netzentwicklungsplan fügt die Entwicklung des Übertragungsnetzes an Land, die räumliche Planung auf See und die technischen Rahmenbedingungen zu einer nachhaltigen Planung mit detaillierten Angaben zu Beschaffenheit, zeitlicher Staffelung, Realisierungszeiten und Kosten der für die nächsten zehn beziehungsweise 20 Jahre notwendigen Maßnahmen zusammen. Im Fokus steht hierbei besonders die zeitliche Staffelung der Maßnahmen des Offshore-Netzausbaus aufgrund von objektiven Kriterien. Dazu gehören eine Einteilung von Nord- und Ostsee in Entfernungszonen, Erzeugungspotenzial der einzelnen im Bundesfachplan Offshore bzw. in der jeweiligen Landesraumordnung ausgewiesenen Cluster, die geplante Inbetriebnahme der im Netzentwicklungsplan Strom festgelegten Netzverknüpfungspunkte sowie der Realisierungsfortschritt der anzubindenden Offshore-Windparks. Der Offshore-Netzentwicklungsplan nimmt damit eine Schlüsselposition als Koordinationsinstrument für die effiziente und nachhaltige Entwicklung der Offshore-Windenergie ein.

Der Offshore-Netzentwicklungsplan ermittelt den Bedarf an Netzanbindungssystemen und bestimmt unter Berücksichtigung der erwarteten geographischen Verteilung der Offshore-Windparks und der an den Netzverknüpfungspunkten im Übertragungsnetz verfügbaren Netzanschlusskapazitäten die Anfangs- und Endpunkte von Netzanbindungssystemen. Konkrete Trassenkorridore werden im Rahmen der Bundesfachplanung in der ausschließlichen Wirtschaftszone durch das Bundesamt für Seeschifffahrt und Hydrographie bzw. im Küstenmeer durch die Bundesnetzagentur in Zusammenarbeit mit den Bundesländern festgelegt.

Die Abstimmung des Netzausbaus an Land, der Entwicklung der Offshore-Windparks, des Bundesfachplans Offshore und der Planungen der Küstenländer miteinander ist ein iterativer Prozess. Die Ergebnisse des Offshore-Netzentwicklungsplans werden Rückwirkungen auf die Offshore-Windenergiebranche und die eingeflossenen Pläne haben, die wieder zu Anpassungen in den folgenden Offshore-Netzentwicklungsplänen führen werden. Der Offshore-Netzentwicklungsplan ist damit nicht abschließend, sondern wird ebenso wie der Netzentwicklungsplan Strom regelmäßig überarbeitet, um den sich verändernden Rahmenbedingungen gerecht zu werden.

Ergebnisse

Der Ausbaubedarf des Offshorenetzes liegt zwischen 1.135 km in Szenario A 2024, 1.605 km in Szenario B 2024 bis hin zu 2.540 km in Szenario C 2024. Die Gesamt-Übertragungskapazität des Zubau-Offshorenetzes reicht dabei von zusätzlichen 3,7 GW in Szenario A 2024, über 5,1 GW in Szenario B 2024 bis zu 7,9 GW in Szenario C 2024. Die Investitionskosten für die Netzmaßnahmen werden im Offshore-Netzentwicklungsplan auf Basis von spezifischen Kostenansätzen ermittelt und haben einen vorläufigen Charakter. Das Gesamtvolumen der Investitionen beträgt in den nächsten zehn Jahren je nach Szenario insgesamt ca. 17 Mrd. € bis 23 Mrd. €. Die Investitionen in das Start-Offshorenetz von rund 12 Mrd. € sind hier bereits berücksichtigt.

6 Fazit

Der Offshore-Netzentwicklungsplan zeigt für den öffentlich zur Konsultation gestellten und von der Bundesnetzagentur am 30.08.2013 genehmigten Szenariorahmen Maßnahmen auf, die allen vom Gesetzgeber und der Regulierungsbehörde gestellten Anforderungen gerecht werden. Drei Szenarien beziehen sich auf das Zieljahr 2024. Ein Szenario wurde zusätzlich für das Jahr 2034 untersucht, um die langfristige Entwicklung über einen Zeitraum von 20 Jahren abzuschätzen. Durch die Bandbreite von drei Szenarien decken die ermittelten Netzausbaumaßnahmen eine Vielzahl möglicher zukünftiger Entwicklungen ab.

Vor dem Hintergrund der von der Bundesregierung im Koalitionsvertrag sowie den Eckpunkten für eine EEG-Reform geplanten Anpassungen der energiepolitischen Ziele scheint es im Gegensatz zum Offshore-Netzentwicklungsplan 2013 nicht mehr angebracht, ein Szenario (wie B 2024 oder A 2024) als "Leitszenario" und dessen Netz als Ergebnis des Offshore-Netzentwicklungsplans auszuweisen.

Sofern der eingeschlagene Weg der Energiewende im Prinzip erhalten bleibt, sprich der Ausstieg aus der Kernenergie und der dynamische Ausbau der erneuerbaren Energien zur Stromversorgung als grundsätzliche Ausrichtung der deutschen Energiepolitik beibehalten werden, sind die Anfang 2014 bestätigten Maßnahmen des Offshore-Netzentwicklungsplans 2013 nach wie vor erforderlich. Der Vergleich der Ergebnisnetze von Offshore-Netzentwicklungsplan 2013 und 2014 zeigt, dass die Notwendigkeit von Ausbaumaßnahmen auch bei einer Reduzierung der Zielzahlen im Szenariorahmen langfristig gesehen nicht abnimmt, sondern lediglich zeitlich gestreckt wird. Die aktuell diskutierte Neujustierung des EEG bedeutet damit keine grundsätzliche Umkehr, sondern vielmehr eine zeitliche Streckung der Entwicklung einzelner Erzeugungsarten wie beispielsweise der Offshore-Windkraft. Dadurch verschieben sich einige Netzentwicklungsmaßnahmen ebenfalls zeitlich etwas nach hinten, ohne deswegen obsolet zu werden. Die Übertragungsnetzbetreiber bauen nur das Netz, das nötig ist, um die Energiewende netzseitig effizient und sicher zu ermöglichen.

Zusätzliche Erkenntnisse vor dem Hintergrund der aktuellen politischen Diskussion

In einem Exkurs im Netzentwicklungsplan Strom 2014 interpretieren die Übertragungsnetzbetreiber die Ergebnisse des Netzentwicklungsplans vor dem Hintergrund der neuen Eckpunkte der deutschen Bundesregierung für eine EEG-Reform. Die Übertragungsnetzbetreiber werden die neuen Rahmenbedingungen zusätzlich zum Netzentwicklungsplan Strom und Offshore-Netzentwicklungsplan 2014 dadurch politisch würdigen, dass sie flankierend Sensitivitätsberechnungen anstellen, die erste maßnahmenscharfe Hinweise auf die Auswirkungen einzelner Parameter der geplanten politischen EEG-Reformen auf den Netzausbau geben werden.

Ein erfolgreicher Ausbau der Offshore-Windenergie ist auf Verständnis und breite Akzeptanz in Politik und Gesellschaft sowie eine gute Verzahnung der Entwicklung der Offshore-Windparks, des Offshorenetzes und des Übertragungsnetzes an Land angewiesen. Für die Umsetzung dieses ambitionierten Investitionsprogrammes werden sowohl der planungsrechtliche und regulatorische Rahmen als auch eine breite gesellschaftliche und politische Unterstützung auf allen Ebenen entscheidend sein. Dies setzt umfassende Information sowie eine partnerschaftliche, verbindliche Zusammenarbeit der Akteure voraus. Der Prozess der Netzentwicklungsplanung will dazu beitragen, indem er Transparenz und einen öffentlichen Dialog befördert. In der öffentlichen Konsultation zum ersten Entwurf des Offshore-Netzentwicklungsplans 2014 ist die breite Öffentlichkeit durch die Übertragungsnetzbetreiber eingeladen, sich an diesem Prozess zu beteiligen.

Der vorliegende Entwurf des Offshore-Netzentwicklungsplans 2014 wird von den Übertragungsnetzbetreibern bis zum 28.05.2014 öffentlich zur Konsultation gestellt. Rückmeldungen aus der Konsultation fließen in den zweiten Entwurf des Offshore-Netzentwicklungsplans 2014 ein. Die Übertragungsnetzbetreiber hoffen wie im Vorjahr auf eine engagierte Teilnahme an der Konsultation dieses Entwurfs.

GLOSSAR

A

AC-Anschluss

Von der Umspannplattform eines Offshore-Windparks wird die erzeugte elektrische Energie über einen AC-Anschluss zu einer Konverterplattform (bei DC-Netzanbindungssystemen) oder einem Punkt im jeweiligen Offshore-Windpark Cluster oder in der Nähe dessen (bei AC-Netzanbindungssystemen) geführt. Von dort wird die elektrische Energie über eine HGÜ-Verbindung oder eine AC-Verbindung zum landseitigen Netzverknüpfungspunkt geleitet. AC-Anschluss und AC-Verbindung bilden zusammen ein AC-Netzanbindungssystem.

AC-Kabelsystem

Siehe Kabelsystem.

AC-Netzanbindungssystem

Siehe Netzanbindungssystem.

AC-Verbindung

Die von Offshore-Windparks erzeugte elektrische Energie wird an einen Punkt im jeweiligen Offshore-Windpark Cluster oder in die Nähe dessen geführt. Handelt es sich um ein AC-Netzanbindungssystem wird von dort die elektrische Energie über eine AC-Verbindung zum landseitigen Netzverknüpfungspunkt geleitet. AC-Anschluss und AC-Verbindung bilden zusammen ein AC-Netzanbindungssystem.

Ausschließliche Wirtschaftszone (AWZ)

Die deutschen Gewässer in Nord- und Ostsee werden in das Küstenmeer (12 Seemeilen-Zone) und die ausschließliche Wirtschaftszone unterteilt. Das Küstenmeer ist deutsches Hoheitsgebiet und unterliegt der Zuständigkeit des jeweiligen Bundeslandes. Jenseits des Küstenmeers bis maximal 200 Seemeilen Entfernung zur Küste befindet sich die ausschließliche Wirtschaftszone, die der Zuständigkeit des Bundesamtes für Seeschifffahrt und Hydrographie (BSH) unterliegt.

B

Blindleistung

Blindleistung ist die elektrische Leistung, die zum Aufbau von magnetischen (z. B. in Motoren, Transformatoren) oder elektrischen Feldern (z. B. in Kondensatoren, Kabeln) benötigt wird, die aber nicht wie Wirkleistung nutzbar ist.

Blindleistungskompensation

Eine Anlage zur Kompensation von Blindleistung in elektrischen Energieübertragungsnetzen. Die Bezeichnung "statisch" drückt aus, dass die Kompensation ohne Einsatz von rotierenden Maschinen wie den Synchronmaschinen erfolgt. Darüber hinaus gibt es noch verschiedene Arten der Ansteuerung dieser einzusetzenden Blindleistung (schaltbare, variable und feste Blindleistungskompensation).

C

Cable-hang-off

Mechanische Befestigung eines Kabelsystems auf Offshore-Plattformen (z. B. Konverter-, Sammel- oder Umspannplattform).

Cluster

Bezeichnet einen räumlich zusammenhängenden Bereich von Offshore-Windparks.

D

Dauerleistung

Die Dauerleistung einer Erzeugungseinheit ist die höchste Leistung, die bei einem bestimmungsgemäßen Betrieb ohne zeitliche Einschränkung erbracht wird und ihre Lebensdauer (Betriebszeit) und Sicherheit nicht beeinträchtigt.

DC-Kabelsystem

Siehe Kabelsystem.

DC-Netzanbindungssystem

Siehe Netzanbindungssystem.

Drehstrom

Als Dreiphasenwechselstrom – je nach Bezug auch als Dreiphasenwechselspannung, Kraftstrom, Starkstrom oder umgangssprachlich auch als Drehstrom bezeichnet – wird in der Elektrotechnik eine Form von Mehrphasenwechselstrom benannt, der aus drei einzelnen Wechselströmen oder Wechselspannungen gleicher Frequenz besteht, welche zueinander eine feste Phasenverschiebung von 120° aufweisen.

Drehstromsystem

Drei zusammengehörige voneinander und der Umgebung isolierte elektrische Leiter zur Übertragung von dreiphasigem Wechselstrom (Drehstrom).

Ε

Eigenbedarfsversorgung

Für den Betrieb des Netzanbindungssystems und des Offshore-Windparks notwendige Eigenbedarfsversorgung der Betriebs- und der Nebenanlagen.

Elektrische Energie, elektrische Arbeit

Als elektrische Energie bezeichnet man Energie, die mittels der Elektrizität übertragen oder in elektrischen Feldern gespeichert wird. Bei der Übertragung von Energie mithilfe der Elektrizität spricht man auch von elektrischer Arbeit.

Elektrische Leistung

Elektrische Leistung im physikalischen Sinne als Produkt von Strom und Spannung ist ein Momentanwert. Bei Angabe von Momentanwerten ist der Zeitpunkt (Datum und Uhrzeit) anzugeben. In der Elektrizitätswirtschaft werden neben Momentanwerten auch mittlere Leistungen für definierte Zeitspannen (Messzeiten, z. B. 1 h) verwendet. Leistung ist dann der Quotient aus der in einer Zeitspanne geleisteten Arbeit W und derselben Zeitspanne T; P = W/T.

Erneuerbare-Energien-Gesetz (EEG)

Das "Gesetz über den Vorrang Erneuerbarer Energien" (EEG) wurde erstmals zum 1. April 2000 eingeführt. Das EEG schreibt die Aufnahme und Vergütung von regenerativ erzeugtem Strom aus Wasserkraft, Windkraft, Biomasse, Deponiegas, Klärgas, Grubengas und Photovoltaik durch den örtlichen Netzbetreiber vor. Das EEG verpflichtet die Übertragungsnetzbetreiber zu einem Belastungsausgleich der eingespeisten Strommengen und der Vergütungen untereinander. Im Ergebnis vermarkten die Übertragungsnetzbetreiber den EEG-Strom an einer Strombörse. Die daraus erzielten Einnahmen sowie die Einnahmen aus der EEG-Umlage dienen zur Deckung der Ausgaben (im Wesentlichen die Vergütungszahlungen). Die EEG-Umlage wird durch die Stromlieferanten vom Letztverbraucher erhoben und an die Übertragungsnetzbetreiber weitergeleitet.

Erzeugungseinheit

Eine Erzeugungseinheit für elektrische Energie ist eine nach bestimmten Kriterien abgrenzbare Anlage eines Kraftwerkes. Es kann sich dabei beispielsweise um einen Kraftwerksblock, ein Sammelschienenkraftwerk, eine GuD-Anlage, eine Windenergieanlage, den Maschinensatz eines Wasserkraftwerkes, einen Brennstoffzellenstapel oder um ein Solarmodul handeln.

Grenzkorridor

Im Bundesfachplan Offshore definierte Abschnitte an der Grenze zwischen AWZ und Küstenmeer, durch welche die Kabeltrassen geführt werden.

Gleichstrom

Als Gleichstrom wird ein elektrischer Strom bezeichnet, dessen Stärke und Richtung sich nicht ändert. Oft zu finden ist das Kürzel DC ("direct current").

н

HGÜ

Die Hochspannungs-Gleichstrom-Übertragung (HGÜ) ist ein Verfahren zur Übertragung von großen elektrischen Leistungen bei sehr hohen Spannungen (100 –1.000 kV) über sehr große Distanzen. Oft zu finden ist das Kürzel DC ("direct current"). Für die Einspeisung in das herkömmliche Stromnetz sind Umrichter erforderlich.

HGÜ-Verbindung

Die von Offshore-Windparks erzeugte Energie wird an einen Punkt im oder in der Nähe des jeweiligen Offshore-Windpark-Clusters geführt. Handelt es sich um ein DC-Netzanbindungssystem wird von dort die Energie über eine HGÜ-Verbindung zum landseitigen Netzverknüpfungspunkt geleitet. Ein oder mehrere AC-Anschlüsse und eine HGÜ-Verbindung bilden zusammen ein DC-Netzanbindungssystem.

Höchstspannung

Bezeichnet den Spannungsbereich von 150 kV und höher.

Ī

Impedanz

Die Impedanz, auch Wechselstromwiderstand, gibt das Verhältnis von elektrischer Spannung an einem Verbraucher (Bauelement, Leitung usw.) zu aufgenommenem Strom an. Diese physikalische Größe wird im Allgemeinen vorteilhaft als komplexwertige Funktion angegeben.

Interkonnektor

Eine Höchstspannungs-Übertragungsleitung zwischen zwei Staaten wird als Interkonnektor bezeichnet.

Instandhaltung

Die Instandhaltung besteht aus Inspektion, Wartung und Instandsetzung. Sie gewährleistet den Erhalt des Sollzustandes der Anlage über die Lebensdauer.

Ist-Netz (NEP)

Das Ist-Netz ist das heute bestehende Netz.

Ist-Offshorenetz, Start-Offshorenetz

Das Start-Offshorenetz bildet den Ausgangspunkt für die Planungen im O-NEP. Es beinhaltet das Ist-Offshorenetz ergänzt um Netzanbindungssysteme für Offshore-Windparks, denen durch den anbindungsverpflichteten Übertragungsnetzbetreiber eine gültige Netzanbindungszusage erteilt wurde. Die Verpflichtung gilt gemäß § 17e Abs. 2 Energiewirtschaftsgesetz für

- Offshore-Windparks, denen bis zum 29.08.2012 eine unbedingte Netzanbindungszusage erteilt wurde und
- Offshore-Windparks, denen zunächst eine bedingte Netzanbindungszusage erteilt wurde und die bis zum 01.09.2012 alle für eine unbedingte Netzanbindungszusage notwendigen Kriterien nachgewiesen hatten.

J

J-tube

Die Kabelaufführung auf Offshore-Plattformen (z. B. Konverter-, Sammel- oder Umspannplattform).

K

Kabelsystem

Ein System zum Transport von elektrischer Energie, bei dem die elektrischen Leiter voneinander und gegen Erde durch einen Stoff isoliert und durch einen gemeinsamen oder einzelne Schutzmäntel gegen mechanische Beschädigung geschützt sind.

Ist das System in der Erde verlegt handelt sich es um ein Kabelsystem. Dient das Kabelsystem zum Transport von Drehstrom handelt es sich um ein AC-Kabelsystem. Dient das System zum Transport von Gleichstrom handelt es sich um ein DC-Kabelsystem.

Konverterplattform

Seeseitiges Bauwerk zur Aufnahme des Umrichters und anderer seeseitiger Komponenten einer HGÜ-Verbindung einschließlich aller Nebeneinrichtungen. Die Konverterplattform selbst ist Bestandteil der HGÜ-Verbindung.

Konverterstation

Landseitiges Bauwerk zur Aufnahme des Umrichters und anderer landseitiger Komponenten einer HGÜ-Verbindung einschließlich aller Nebeneinrichtungen.

L

Last

Die in Anspruch genommene Leistung wird im elektrizitätswirtschaftlichen Sprachgebrauch "Last" genannt. Sie kann die Summe der momentanen Leistungsentnahme aus einem, mehreren oder allen Netzen einer Regelzone zum Zwecke des Verbrauchs sein.

N

(n-0)-Kriterium

Unter dem (n-0)-Kriterium versteht man im Zusammenhang mit der Netzplanung ein Netzanbindungssystem ohne Redundanz. Dies bedeutet, dass das Netzanbindungssystem ausfällt, wenn mindestens ein für die Netzanbindung erforderliches Betriebsmittel ausfällt. Vergleiche dazu auch -> (n-1)-Kriterium.

(n-1)-Kriterium

Der Grundsatz der (n-1)-Sicherheit in der Netzplanung besagt, dass in einem Netz bei prognostizierten maximalen Übertragungs- und Versorgungsaufgaben die Netzsicherheit auch dann gewährleistet bleibt, wenn eine Komponente, etwa ein Transformator oder ein Stromkreis, ausfällt oder abgeschaltet wird. Das heißt, es darf in diesem Fall nicht zu unzulässigen Versorgungsunterbrechungen oder einer Ausweitung der Störung kommen. Außerdem muss die Spannung innerhalb der zulässigen Grenzen bleiben und die verbleibenden Betriebsmittel dürfen nicht überlastet werden. Diese allgemein anerkannte Regel der Technik gilt grundsätzlich auf allen Netzebenen. Im Verteilungsnetz werden allerdings je nach Kundenstruktur Versorgungsunterbrechungen in Grenzen toleriert, wenn sie innerhalb eines definierten Zeitraums behoben werden können. Andererseits wird in empfindlichen Bereichen des Übertragungsnetzes sogar ein über das (n-1)-Kriterium hinausgehender Maßstab angelegt, etwa, wenn besonders sensible Kunden wie Werke der Chemieoder Stahlindustrie versorgt werden oder wenn ein Ausfall eine großflächigere Störung oder eine Gefahrensituation nach sich ziehen wurde. Hier wird das Netz so ausgelegt, dass auch bei betriebsbedingter Abschaltung eines Elements und zeitgleichem Ausfall eines weiteren ((n-2)-Fall) die Netzsicherheit gewährleistet bleibt.

Nennleistung

Die Nennleistung einer Erzeugungseinheit ist die Dauerleistung, für die sie gemäß Liefervereinbarungen bestellt ist. Ist die Nennleistung nicht eindeutig nach Bestellunterlagen bestimmbar, so ist für die Neuanlage einmalig ein bei Normalbedingungen erreichbarer – Leistungswert zu bestimmen. Bei Kraft-Wärme-Kopplungsanlagen ist die Nennleistung die elektrische Nennleistung.

Netzanbindungssystem (NAS)

Gesamtheit aller Einrichtungen zur Übertragung von elektrischer Energie zwischen dem Netzanschlusspunkt am Offshore-Windpark und dem Netzverknüpfungspunkt mit dem Übertragungsnetz. Wird zur Übertragung ausschließlich Drehstrom eingesetzt handelt es sich um ein AC-Netzanbindungssystem. Wird auf mindestens einer Teilstrecke zur Übertragung Gleichstrom eingesetzt handelt es sich um ein DC-Netzanbindungssystem.

Netzanschluss

Der Netzanschluss bezeichnet die technische Anbindung von Kundenanlagen an ein Netz.

Netzanschlusspunkt (NAP)

Der Netzanschlusspunkt ist der Punkt, an dem die Anschlussanlagen eines Netznutzers mit dem Netz verbunden werden. Bei der Netzanbindung von Offshore-Windparks bezeichnet er die Schnittstelle zwischen Offshore-Windpark und Netzanbindungssystem.

Netzanschlussregeln (NAR)

Technische Mindestanforderungen an die Anschlüsse des Netzes.

Netzkoppelpunkt (NKP)

Er dient der seeseitigen Längskopplung paralleler Offshore-Netzanbindungssysteme zu einem Offshorenetz und zur seeseitigen Querankopplung von Fremdnetzen, sodass ein Netzanbindungssystem an systemfremde Netzverknüpfungspunkte betrieblich geschaltet werden kann. Dieser Netzkoppelpunkt kann sich zum Beispiel auf einer Konverter- oder Sammelplattform befinden.

Netzbetreiber

Ein Netzbetreiber (Betreiber eines Übertragungs- oder Verteilungsnetzes) ist für den sicheren und zuverlässigen Betrieb des jeweiligen Netzes in einem bestimmten Gebiet und für die Verbindungen mit anderen Netzen verantwortlich. Der Betreiber eines Übertragungsnetzes regelt darüber hinaus die Übertragung über das Netz unter Berücksichtigung des Austausches mit anderen Übertragungsnetzen. Er sorgt für die Bereitstellung unentbehrlicher Systemdienstleistungen und stellt so die Versorgungszuverlässigkeit sicher.

Netznutzer

Ein Netznutzer (Nutzer des Übertragungs- bzw. Verteilungsnetzes) ist jede natürliche oder juristische Person, die in einem Nutzungsverhältnis zum Netz steht und demgemäß auf vertraglicher Basis Leistungen des Netzbetreibers in Anspruch nimmt.

Netzverknüpfungspunkt (NVP)

Technisch und wirtschaftlich günstigster Verknüpfungspunkt des Netzanbindungssystems mit dem nächsten Übertragungs- oder Verteilungsnetz (landseitige Schaltanlage).

NOVA-Prinzip

NOVA steht für Netzoptimierung vor -verstärkung vor -ausbau. Nach diesem Prinzip haben Maßnahmen zur Netzoptimierung und Netzverstärkung Vorrang vor einem Ausbau der Stromnetze.

offshore

Auf See, seeseitig.

onshore

An Land, landseitig.

Offshore-Windpark

Die Bezeichnung Offshore-Windpark wird für Windparks verwendet, deren Fundamente in der See stehen.

R

Regelzone

Der Übertragungsnetzbetreiber ist gesetzlich verpflichtet, in seiner Regelzone ständig das Leistungsgleichgewicht zwischen elektrischer Erzeugung und Verbrauch aufrechtzuhalten.

Reserveleistung

Reserveleistung ist die Leistung, die Abweichungen in der Leistungsbilanz zwischen den erwarteten und den tatsächlich eintretenden Verhältnissen ausgleichen soll oder die für konkret planbare Sachverhalte vorgehalten wird.

S

Sammelplattform

Auf dieser Offshore-Plattform werden mehrere AC-Verbindungen zusammengeführt und so miteinander verbunden, dass bei Ausfall einer AC-Verbindung zwischen der Sammelplattform und dem Festland der aus den Offshore-Windparks ankommende Strom bei freien Kapazitäten auf andere AC-Verbindungen umgeleitet werden kann.

Schaltanlage

Elektrische Einrichtung zum Verknüpfen von Stromkreisen (Leitungen, Transformatoren, Drosselspulen, Kondensatoren). Leistungsschalter dienen zum Schalten von Betriebs- und Fehlerströmen, Trennschalter ermöglichen durch Herstellen von Trennstrecken sicheres Arbeiten in der Anlage.

Scoping

Bezeichnet einen Teil eines Planungsprozesses. Die zuständige Behörde gibt dem Träger eines Vorhabens sowie den beteiligenden Behörden im Rahmen des Scoping-Termins Gelegenheit zu einer Besprechung über Gegenstand, Umfang und Methoden in den zu erstellenden Antragsunterlagen sowie sonstiger für die Durchführung des Verfahrens erheblicher Fragen.

Schwarzstartfähigkeit

Kommt es im Verlauf einer Störung zu einem weiträumigen Zusammenbruch des Netzes, ist es notwendig, als ersten Schritt für den Versorgungswiederaufbau über Erzeugungseinheiten zu verfügen, die ohne Eigenbedarfsversorgung "von außen" den Betrieb selbstständig wieder aufnehmen können (Schwarzstart). Der Übertragungsnetzbetreiber hat für seine Regelzone dafür Sorge zu tragen, dass eine ausreichende Anzahl von schwarzstartfähigen Erzeugungseinheiten zur Verfügung steht.

Spannungshaltung

Die Spannungshaltung gehört zu den Systemdienstleistungen eines Netzbetreibers und dient der Aufrechterhaltung eines akzeptablen Spannungsprofils im gesamten Netz. Dies wird durch eine ausgeglichene Blindleistungsbilanz in Abhängigkeit vom jeweiligen Blindleistungsbedarf des Netzes und der Netzkunden erreicht.

Spannungsstützung

Lokales Stützen der Spannung im Fehlerfall durch Einspeisen von Blindleistung.

Stakeholder

Alle Personen oder Gruppen, die ein berechtigtes Interesse am Verlauf oder Ergebnis eines Prozesses oder Projektes haben.

Startnetz (NEP)

Das Startnetz besteht aus den folgenden Netzprojekten:

- dem heutigen Netz (Ist-Netz),
- den EnLAG-Maßnahmen,
- den in der Umsetzung befindlichen Netzausbaumaßnahmen (planfestgestellt bzw. in Bau)
- sowie Maßnahmen aufgrund sonstiger Verpflichtungen (Kraftwerks-Netzanschlussverordnung, KraftNAV bzw. Anschlusspflicht der Industriekunden).

Start-Offshorenetz

Siehe Ist-Offshorenetz

Stranded Investments

Investitionen in Netzanbindungssysteme, die vollständig oder teilweise ungenutzt bleiben.

Systemdienstleistungen

Als Systemdienstleistungen werden in der Elektrizitätsversorgung diejenigen für die Funktionstüchtigkeit des Systems unvermeidlichen Dienstleistungen bezeichnet, die Netzbetreiber für ihre Netzkunden zusätzlich zur Übertragung und Verteilung elektrischer Energie erbringen und damit die Qualität der Stromversorgung bestimmen.

U

Übertragung

Die Übertragung im elektrizitätswirtschaftlichen Sinn ist der technisch-physikalische Vorgang der zeitgleichen Einspeisung von elektrischer Leistung an einer oder mehreren Übergabestellen und einer korrespondierende Entnahme elektrischer Leistung an einer oder mehreren Übergabestellen eines Netzes.

Übertragungsnetzbetreiber (ÜNB)

Betreiber von Übertragungsnetzen sind natürliche oder juristische Personen oder rechtlich unselbstständige Organisationseinheiten eines Energieversorgungsunternehmens, die die Aufgabe der Übertragung von Elektrizität wahrnehmen und für den Betrieb, die Wartung sowie erforderlichenfalls den Ausbau des Übertragungsnetzes in einem bestimmten Gebiet und gegebenenfalls der Verbindungsleitungen zu anderen Netzen verantwortlich sind.

Umrichter, Umrichteranlage

Einrichtung zur Gleichrichtung von Wechselstrom in Gleichstrom oder Wechselrichtung von Gleichstrom in Wechselstrom.

Umspannanlage

Eine Umspannanlage ist eine elektrische Anlage zur Übertragung von elektrischer Energie zwischen Netzen mit unterschiedlichen Spannungsebenen.

Verbraucher

Als Verbraucher bezeichnet man Geräte und Anlagen, die elektrische Energie aufnehmen.

Verteilungsnetz

Das Verteilungsnetz dient innerhalb einer begrenzten Region der Verteilung elektrischer Energie zur Speisung von Stationen und Kundenanlagen. In Verteilungsnetzen ist der Leistungsfluss im Wesentlichen durch die Kundenbelastung bestimmt. In Deutschland werden Nieder-, Mittel- und Hochspannungsnetze (>110 kV) als Verteilungsnetze genutzt. In besonderen Fällen kann auch ein 380- und 220-kV-Teilnetz als Verteilungsnetz betrachtet werden.

Wechselstrom

Wechselstrom bezeichnet elektrischen Strom, der seine Richtung (Polung) in regelmäßiger Wiederholung ändert und bei dem sich positive und negative Augenblickswerte so ergänzen, dass der Strom im zeitlichen Mittel null ist.

Wirkleistung

Wirkleistung ist die elektrische Leistung, die für die Umsetzung in eine andere Leistung, z. B. in mechanische, thermische, chemische, optische oder akustische Leistung verfügbar ist.

LITERATURVERZEICHNIS

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, TransnetBW GmbH (ÜNB) (2014). Sensitivitätenbericht 2014. Verfügbar unter:

http://www.netzentwicklungsplan.de/sensitivitätenbericht-2014 [14.04.2014]

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, TransnetBW GmbH (ÜNB) (2014). Netzentwicklungsplan Strom 2014, erster Entwurf vom 16. April 2014. Verfügbar unter: http://www.netzentwicklungsplan.de/ [14.04.2014]

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, TransnetBW GmbH (ÜNB) (2013). Zweiter Entwurf des Offshore-Netzentwicklungsplan 2013. Verfügbar unter: http://www.netzentwicklungsplan.de/content/offshore-netzentwicklungsplan-2013-zweiter-entwurf [14.04.2014]

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, TransnetBW GmbH (ÜNB) (2013). Szenariorahmen für den Netzentwicklungsplan Strom 2014 – Entwurf. Verfügbar unter: http://www.netzentwicklungsplan.de/content/materialien [14.04.2014]

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO, TransnetBW GmbH (ÜNB) (2013). Netzentwicklungsplan Strom 2013, erster Entwurf vom 02. März 2013 (Online). Verfügbar unter: http://www.netzentwicklungsplan.de [14.03.2014]

50Hertz Transmission GmbH, Amprion GmbH, TenneT TSO GmbH, TransnetBW GmbH (ÜNB) (2012). Szenariorahmen für den Netzentwicklungsplan Strom 2013 – Entwurf. Verfügbar unter: http://www.netzentwicklungsplan.de/content/materialien [14.03.2014]

Bundesamt für Seeschifffahrt und Hydrographie (2012). Bundesfachplan Offshore für die deutsche ausschließliche Wirtschaftszone der Nordsee 2012 und Umweltbericht. Verfügbar unter: http://www.bsh.de/de/Meeresnutzung/BFO/Bundesfachplan Nordsee.jsp [14.03.2014]

Bundesamt für Seeschifffahrt und Hydrographie (2013). Erster Entwurf Bundesfachplan Offshore für die deutsche ausschließliche Wirtschaftszone der Ostsee 2013. Verfügbar unter: http://www.bsh.de/de/Meeresnutzung/BFO/Bundesfachplan_Ostsee.jsp [14.04.2014]

Bundesnetzagentur (2012). Genehmigung des Szenariorahmens für den Netzentwicklungsplan Strom 2013 gemäß § 12a Abs. 3EnWG (Online). Verfügbar unter:

 $\underline{\text{http://www.netzausbau.de/cln_1431/DE/BundesweitePlaene/Charlie/SzenariorahmenCharl$

[14.04.2014]

Literaturverzeichnis

Deutscher Bundestag (2013). Gesetz über den Bundesbedarfsplan (2013). Verfügbar unter: http://www.gesetze-im-internet.de/bbplg/ [14.04.2014]

Deutscher Bundestag (2012). Entwurf eines Dritten Gesetzes zur Neuregelung energiewirtschaftsrechtlicher Vorschriften mit Begründung zu § 17b EnWG (Online). Verfügbar unter: http://dip21.bundestag.de/dip21/btd/17/107/1710754.pdf [14.04.2014]

Entsoe (2014). Ten-Year Network Development Plan 2014. Verfügbar unter: https://www.entsoe.eu/major-projects/ten-year-network-development-plan/tyndp-2014/ [14.04.2014]

VDE Verband der Elektrotechnik Elektronik Informationstechnik e.V./Forum Netztechnik/Netzbetrieb im VDE (FNN) (2014). Karte "Deutsches Höchstspannungsnetz".